RESUMEN
Biomass valorization via catalytic gasification is a potential technology for commercizalization to industrial scale. However, the generated tar during biomass valorization posing numerous problems to the overall reaction process. Thus, catalytic tar removal via reforming, cracking and allied processes was among the priority areas to researchers in the recent decades. This paper reports new updates on the areas of catalyst development for tar reduction. The catalyst survey include metallic and metal-promoted materials, nano-structured systems, mesoporous supports like zeolites and oxides, group IA and IIA compounds and natural catalysts based on dolomite, palygorskite, olivine, ilmenite, goethite and their modified derivatives. The influence of catalyst properties and parameters such as reaction conditions, catalyst preparation procedures and feedstock nature on the overall activity/selectivity/stability properties were simultaneously discussed. This paper not only cover to model compounds, but also explore to real biomass-derived tar for consistency. The area that require further investigation was identified in the last part of this review.
Asunto(s)
Gases , Óxidos , Biomasa , CatálisisRESUMEN
This study investigated the effect of different Co3O4-based catalysts on the catalytic decomposition of nitrous oxide (N2O) and on nitric oxide (NO) conversion. The experiments were carried out using various reaction temperatures, alkaline solutions, pH, mixing conditions, aging times, space velocities, impregnation loads, and compounds. The results showed that Co3O4 catalysts prepared by precipitation methods have the highest catalytic activity and N2O conversion, even at low reaction temperatures, while the commercial nano and powder forms of Co3O4 (CS) have the lowest performance. The catalysts become inactive at temperatures below 400 °C, and their activity is strongly influenced by the mixing temperature. Samples without stirring during the aging process have higher catalytic activity than those with stirring, even at low reaction temperatures (200-300 °C). The catalytic activity of Co3O4 PM1 decreases with low W/F values and low reaction temperatures. Additionally, the catalyst's performance tends to increase with the reduction process. The study suggests that cobalt-oxide-based catalysts are effective in N2O catalytic decomposition and NO conversion. The findings may be useful in the design and optimization of catalytic systems for N2O and NO control. The results obtained provide important insights into the development of highly efficient, low-cost, and sustainable catalysts for environmental protection.
Asunto(s)
Óxido Nítrico , Óxido Nitroso , Óxido Nitroso/química , Temperatura , CatálisisRESUMEN
High-performance metal-based catalysts are pursued to improve the sluggish reaction kinetics in lithium-sulfur batteries. However, it is challenging to achieve high catalytic activity and stability simultaneously due to the inevitable passivation of the highly active metal nanoparticles by lithium polysulfides (LiPSs). Herein, we show a design with well-balanced activity and stability to solve the above problem, that is, the cobalt (Co) nanoparticles (NPs) encapsulated with ultrathin carbon shells prepared by the one-step pyrolysis of ZIF-67. With an ultrathin carbon coating (â¼1 nm), the direct exposure of Co NPs to LiPSs is avoided, but it allows the fast electron transfer from the highly active Co NPs to LiPSs for their conversion to the solid products, ensuring the efficient suppression of shuttling in long cycling. As a result, the sulfur cathode with such a catalyst exhibited good cycling stability (0.073% capacity fading over 500 cycles) and high sulfur utilization (638 mAh g-1 after 180 cycles under a high sulfur mass loading of 7.37 mg cm-2 and a low electrolyte/sulfur ratio of 5 µL mg-1). This work provides insights into the rational design of a protection layer on a metal-based catalyst to engineer both high catalytic activity and stability toward high-energy and long-life Li-S batteries.
RESUMEN
Methane Dry Reforming is one of the means of producing syngas. CeNi0.9Zr0.1O3 catalyst and its modification with yttrium were investigated for CO2 reforming of methane. The experiment was performed at 800 °C to examine the effect of yttrium loading on catalyst activity, stability, and H2/CO ratio. The catalyst activity increased with an increase in yttrium loading with CeNi0.9Zr0.01Y0.09O3 catalyst demonstrating the best activity with CH4 conversion >85% and CO2 conversion >90% while the stability increased with increases in zirconium loading. The specific surface area of samples ranged from 1−9 m2/g with a pore size of 12−29 nm. The samples all showed type IV isotherms. The XRD peaks confirmed the formation of a monoclinic phase of zirconium and the well-crystallized structure of the perovskite catalyst. The Temperature Program Reduction analysis (TPR) showed a peak at low-temperature region for the yttrium doped catalyst while the un-modified perovskite catalyst (CeNi0.9Zr0.1O3) showed a slight shift to a moderate temperature region in the TPR profile. The Thermogravimetric analysis (TGA) curve showed a weight loss step in the range of 500−700 °C, with CeNi0.9Zr0.1O3 having the least carbon with a weight loss of 20%.
RESUMEN
The precisely coupling of metal nanoparticles with support domain are crucial to enhance the catalytic activity and stability of supported metal nanoparticle catalysts (MNPs). Here we selectively anchor Pd nanoparticles to the sp2 domain in graphene-based aerogel constructed with base-washed graphene oxide (BGO) by removing oxidative debris (OD). The effects of OD on the size and chemical composition of Pd nanoparticles in aerogels are initially unveiled. The removal of OD nanoparticles prompt selective coupling of Pd nanoparticles to the exposed sp2-hybridized domain on BGO nanosheets, and then prevent it from agglomeration. As a result, the Pd nanoparticle size of self-assembled Pd/BGA is 4.67 times smaller than that of traditional Pd/graphene oxide aerogel (Pd/GA). The optimal catalytic activity of Pd/BGA for the model catalytic reduction of 4-nitrophenol is 15 times higher than that of Pd/GA. Pd/BGA could maintain its superior catalytic activity and achieves 98.72% conversion in the fifth cycle. The superior catalytic performance could be ascribed to the small Pd nanoparticles and high percentage of Pd(0) in Pd/BGA, and the enhanced electronic conductivity of Pd/BGA. These integrated merits of Pd/BGA as heterogeneous catalysts are attributed to selectively anchor Pd nanoparticles on sp2-hybridized domain of graphene-based aerogel, and strongly coupled interaction of MNPs with support. The structure-regulated BGO nanosheets could serve as versatile building blocks for fabricating MNPs/graphene aerogels with superior performance for catalytic transformation of water pollutants.
RESUMEN
A carbon supported PtCux/C catalyst, which demonstrates high activity in the oxygen electroreduction and methanol electrooxidation reactions in acidic media, has been obtained using a method of chemical reduction of Pt (IV) and Cu (2+) in the liquid phase. It has been found that the potential range of the preliminary voltammetric activation of the PtCux/C catalyst has a significant effect on the de-alloyed material activity in the oxygen electroreduction reaction (ORR). High-resolution transmission electron microscopy (HRTEM) demonstrates that there are differences in the structures of the as-prepared material and the materials activated in different potential ranges. In this case, there is practically no difference in the composition of the PtCux-y/C materials obtained after activation in different conditions. The main reason for the established effect, apparently, is the reorganized features of the bimetallic nanoparticles' surface structure, which depend on the value of the limiting anodic potential in the activation process. The effect of the activation conditions on the catalyst's activity in the methanol electrooxidation reaction is less pronounced.
RESUMEN
The behavior of supported alloyed and de-alloyed platinum-copper catalysts, which contained 14-27% wt. of Pt, was studied in the reactions of methanol electrooxidation (MOR) and oxygen electroreduction (ORR) in 0.1 M HClO4 solutions. Alloyed PtCux/C catalysts were prepared by a multistage sequential deposition of copper and platinum onto a Vulcan XC72 dispersed carbon support. De-alloyed PtCux-y/C catalysts were prepared by PtCux/C materials pretreatment in acid solutions. The effects of the catalysts initial composition and the acid treatment condition on their composition, structure, and catalytic activity in MOR and ORR were studied. Functional characteristics of platinum-copper catalysts were compared with those of commercial Pt/C catalysts when tested, both in an electrochemical cell and in H2/Air membrane-electrode assembly (MEA). It was shown that the acid pretreatment of platinum-copper catalysts practically does not have negative effect on their catalytic activity, but it reduces the amount of copper passing into the solution during the subsequent electrochemical study. The activity of platinum-copper catalysts in the MOR and the current-voltage characteristics of the H2/Air proton-exchange membrane fuel cell MEAs measured in the process of their life tests were much higher than those of the Pt/C catalysts.
RESUMEN
This paper reports the application of ultrasound in the semi-hydrogenation of alkynes over two novel Pd/Boehmite catalysts. The semi-hydrogenations of phenylacetylene, diphenylacetylene and 2-butyne-1,4-diol have either been investigated in an ultrasonic bath under atmospheric hydrogen pressure, or in an ultrasonic horn reactor under 0.1-0.5MPa hydrogen pressure. Alkyne hydrogenation was suppressed by sonication under atmospheric hydrogen pressure, but promoted by sonication under 0.1MPa of hydrogen pressure. Sonication increased selectivity towards the semi-hydrogenated products in both cases. Catalyst loading, hydrogen pressure, temperature and the presence of quinoline, all impacted on hydrogenation rate, activity and selectivity to semi-hydrogenated products. Palladium leaching from the catalyst was evaluated in ethanol and hexane both under plain stirring and sonication.
RESUMEN
The asymmetric unit of the title complex, [Pd(C15H13FNO)2], contains one half of the mol-ecule with the Pd(II) cation lying on an inversion centre and is coordinated by the bidentate Schiff base anion. The geometry around the cationic Pd(II) centre is distorted square planar, chelated by the imine N- and phenolate O-donor atoms of the two Schiff base ligands. The N- and O-donor atoms of the two ligands are mutually trans, with Pd-N and Pd-O bond lengths of 2.028â (2) and 1.9770â (18)â Å, respectively. The fluoro-phenyl ring is tilted away from the coordination plane and makes a dihedral angle of 66.2â (2)° with the phenolate ring. In the crystal, mol-ecules are linked into chains along the [101] direction by weak C-Hâ¯O hydrogen bonds. Weak π-π inter-actions with centroid-centroid distances of 4.079â (2)â Å stack the mol-ecules along c.