Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
Cell ; 166(6): 1423-1435.e12, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27594426

RESUMEN

Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.


Asunto(s)
Apicomplexa/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Fibroblastos/parasitología , Genoma de Protozoos/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/fisiopatología , Plasmodium falciparum/genética , Toxoplasmosis/parasitología , Toxoplasmosis/fisiopatología
2.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236162

RESUMEN

Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases that belong to the group of endopeptidases or matrixins. They are able to cleave a plethora of substrates, including components of the extracellular matrix and cell-surface-associated proteins, as well as intracellular targets. Accordingly, MMPs play key roles in a variety of physiological and pathological processes, such as tissue homeostasis and cancer cell invasion. MMP activity is exquisitely regulated at several levels, including pro-domain removal, association with inhibitors, intracellular trafficking and transport via extracellular vesicles. Moreover, the regulation of MMP activity is currently being rediscovered for the development of respective therapies for the treatment of cancer, as well as infectious, inflammatory and neurological diseases. In this Cell Science at a Glance article and the accompanying poster, we present an overview of the current knowledge regarding the regulation of MMP activity, the intra- and extra-cellular trafficking pathways of these enzymes and their diverse groups of target proteins, as well as their impact on health and disease.


Asunto(s)
Endopeptidasas , Vesículas Extracelulares , Matriz Extracelular , Proteínas de la Membrana , Metaloproteinasas de la Matriz
3.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039075

RESUMEN

Cell invasion through basement membrane (BM) barriers is important in development, immune function and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of Caenorhabditis elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including translationally controlled tumor protein (TCTP). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling and ribosome biogenesis analysis revealed that a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands before invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER-trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Transcriptoma/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Basal/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155874

RESUMEN

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Asunto(s)
Neoplasias Gástricas , Sindecano-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividad Neoplásica , Neoplasias Gástricas/genética , Sindecano-4/genética , Sindecano-4/metabolismo
5.
Mol Microbiol ; 121(4): 814-830, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38293733

RESUMEN

Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma , Humanos , Mycoplasma/metabolismo , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Adhesinas Bacterianas/metabolismo , Endocitosis , Autofagia
6.
Mol Microbiol ; 121(3): 413-430, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37278220

RESUMEN

Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Typhoidal serovars like Paratyphi A (SPA) are human restricted and cause severe systemic diseases, while many serovars like Typhimurium (STM) have a broad host range, and usually lead to self-limiting gastroenteritis. There are key differences between typhoidal and non-typhoidal Salmonella in pathogenesis, but underlying mechanisms remain largely unknown. Transcriptomes and phenotypes in epithelial cells revealed induction of motility, flagella and chemotaxis genes for SPA but not STM. SPA exhibited cytosolic motility mediated by flagella. In this study, we applied single-cell microscopy to analyze triggers and cellular consequences of cytosolic motility. Live-cell imaging (LCI) revealed that SPA invades host cells in a highly cooperative manner. Extensive membrane ruffling at invasion sites led to increased membrane damage in nascent Salmonella-containing vacuole, and subsequent cytosolic release. After release into the cytosol, motile bacteria showed the same velocity as under culture conditions in media. Reduced capture of SPA by autophagosomal membranes was observed by LCI and electron microscopy. Prior work showed that SPA does not use flagella-mediated motility for cell exit via the intercellular spread. However, cytosolic motile SPA was invasion-primed if released from host cells. Our results reveal flagella-mediated cytosolic motility as a possible xenophagy evasion mechanism that could drive disease progression and contributes to the dissemination of systemic infection.


Asunto(s)
Salmonella enterica , Salmonella paratyphi A , Humanos , Salmonella paratyphi A/genética , Citosol , Macroautofagia , Salmonella enterica/genética , Flagelos
7.
J Bacteriol ; 206(5): e0010924, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597609

RESUMEN

Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/microbiología , Animales , Interacciones Huésped-Patógeno
8.
Carcinogenesis ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795009

RESUMEN

STIP1 homology and U-box protein 1 (STUB1), a crucial member of the RING family E3 ubiquitin ligase, serves dual roles as an oncogene and a tumor suppressor in various human cancers. However, the role and mechanism of STUB1 in clear cell renal cell carcinoma (ccRCC) remain poorly defined. Here, we identified YTHDF1 as a novel STUB1 interaction partner using affinity purification mass spectrometry (AP-MS). Furthermore, we revealed that STUB1 promotes the ubiquitination and degradation of YTHDF1. Consequently, STUB1 depletion leads to YTHDF1 up-regulation in renal cancer cells. Functionally, STUB1 depletion promoted migration and invasion of ccRCC cells in a YTHDF1-dependent manner. Additionally, depletion of STUB1 also increased the tumorigenic potential of ccRCC in a xenograft model. Importantly, STUB1 expression is down-regulated in ccRCC tissues, and its low expression level correlates with advanced tumor stage and poor overall survival in ccRCC patients. Taken together, these findings reveal that STUB1 inhibits the tumorigenicity of ccRCC by regulating YTHDF1 stability.

9.
J Biol Chem ; 299(1): 102779, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496076

RESUMEN

The stimulator of interferon genes (STING) pathway is vital for immune defense against pathogen invasion and cancer. Although ample evidence substantiates that the STING signaling pathway plays an essential role in various cancers via cytokines, no comprehensive investigation of secretory proteins regulated by the STING pathway has been conducted hitherto. Herein, we identify 24 secretory proteins significantly regulated by the STING signaling pathway through quantitative proteomics. Mechanistic analyses reveal that STING activation inhibits the translation of urokinase-type plasminogen activator (PLAU) via the STING-PERK-eIF2α signaling axis. PLAU is highly expressed in a variety of cancers and promotes the migration and invasion of cancer cells. Notably, the activation of STING inhibits cancer cell migration and invasion by suppressing PLAU. Collectively, these results provide novel insights into the anticancer mechanism of the STING pathway, offering a theoretical basis for precision therapy for this patient population.


Asunto(s)
Invasividad Neoplásica , Neoplasias , Activadores Plasminogénicos , Humanos , Movimiento Celular/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Activadores Plasminogénicos/metabolismo , Proteómica , Transducción de Señal , Invasividad Neoplásica/genética
10.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703992

RESUMEN

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

11.
Infect Immun ; 92(2): e0028923, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38174929

RESUMEN

Brucella species are Gram-negative intracellular bacterial pathogens that cause the worldwide zoonotic disease brucellosis. Brucella can infect many mammals, including humans and domestic and wild animals. Brucella manipulates various host cellular processes to invade and multiply in professional and non-professional phagocytic cells. However, the host targets and their modulation by Brucella to facilitate the infection process remain obscure. Here, we report that the host ubiquitin-specific protease, USP8, negatively regulates the invasion of Brucella into macrophages through the plasma membrane receptor, CXCR4. Upon silencing or chemical inhibition of USP8, the membrane localization of the CXCR4 receptor was enriched, which augmented the invasion of Brucella into macrophages. Activation of USP8 through chemical inhibition of 14-3-3 protein affected the invasion of Brucella into macrophages. Brucella suppressed the expression of Usp8 at its early stage of infection in the infected macrophages. Furthermore, we found that only live Brucella could negatively regulate the expression of Usp8, suggesting the role of secreted effector protein of Brucella in modulating the gene expression. Subsequent studies revealed that the Brucella effector protein, TIR-domain containing protein from Brucella, TcpB, plays a significant role in downregulating the expression of Usp8 by targeting the cyclic-AMP response element-binding protein pathway. Treatment of mice with USP8 inhibitor resulted in enhanced survival of B. melitensis, whereas mice treated with CXCR4 or 14-3-3 antagonists showed a diminished bacterial load. Our experimental data demonstrate a novel role of Usp8 in the host defense against microbial intrusion. The present study provides insights into the microbial subversion of host defenses, and this information may ultimately help to develop novel therapeutic interventions for infectious diseases.


Asunto(s)
Brucella melitensis , Brucella , Brucelosis , Animales , Humanos , Ratones , Proteasas Ubiquitina-Específicas/metabolismo , Macrófagos/microbiología , Brucelosis/microbiología , Proteínas Bacterianas/genética , Mamíferos , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
12.
J Cell Physiol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922869

RESUMEN

In eukaryotes, Hsp90B1 serves as a vital chaperonin, facilitating the accurate folding of proteins. Interestingly, Hsp90B1 exhibits contrasting roles in the development of various types of cancers, although the underlying reasons for this duality remain enigmatic. Through the utilization of the Drosophila model, this study unveils the functional significance of Gp93, the Drosophila ortholog of Hsp90B1, which hitherto had limited reported developmental functions. Employing the Drosophila cell invasion model, we elucidated the pivotal role of Gp93 in regulating cell invasion and modulating c-Jun N-terminal kinase (JNK) activation. Furthermore, our investigation highlights the involvement of the unfolded protein response-associated IRE1/XBP1 pathway in governing Gp93 depletion-induced, JNK-dependent cell invasion. Collectively, these findings not only uncover a novel molecular function of Gp93 in Drosophila, but also underscore a significant consideration pertaining to the testing of Hsp90B1 inhibitors in cancer therapy.

13.
Curr Issues Mol Biol ; 46(4): 3408-3423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38666944

RESUMEN

Despite ongoing research in the field of breast cancer, the morbidity rates indicate that the disease remains a significant challenge. While patients with primary tumors have relatively high survival rates, these chances significantly decrease once metastasis begins. Thus, exploring alternative approaches, such as targeting proteins overexpressed in malignancies, remains significant. Filamin A (FLNa), an actin-binding protein (ABP), is involved in various cellular processes, including cell migration, adhesion, proliferation, and DNA repair. Overexpression of the protein was confirmed in samples from patients with numerous oncological diseases such as prostate, lung, gastric, colorectal, and pancreatic cancer, as well as breast cancer. Although most researchers concur on its role in promoting breast cancer progression and aggressiveness, discrepancies exist among studies. Moreover, the precise mechanisms through which FLNa affects cell migration, invasion, and even cancer progression remain unclear, highlighting the need for further research. To evaluate FLNa's potential as a therapeutic target, we have summarized its roles in breast cancer.

14.
Apoptosis ; 29(1-2): 191-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37945815

RESUMEN

During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin ß1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin ß1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin ß1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Animales , Embrión de Pollo , Femenino , Humanos , Ratones , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Integrina beta1/genética , Integrina beta1/metabolismo , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia
15.
Rev Physiol Biochem Pharmacol ; 182: 85-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32776252

RESUMEN

Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , Carcinoma/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
16.
J Cell Sci ; 135(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36017701

RESUMEN

AMP-activated protein kinase (AMPK) is a crucial cellular nutrient and energy sensor that maintains energy homeostasis. AMPK also governs cancer cell invasion and migration by regulating gene expression and activating multiple cellular signaling pathways. ADP-ribosylation factor 6 (Arf6) can be activated via nucleotide exchange by guanine-nucleotide-exchange factors (GEFs), and its activation also regulates tumor invasion and migration. By studying GEF-mediated Arf6 activation, we have elucidated that AMPK functions as a noncanonical GEF for Arf6 in a kinase-independent manner. Moreover, by examining the physiological role of the AMPK-Arf6 axis, we have determined that AMPK activates Arf6 upon glucose starvation and 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) treatment. We have further identified the binding motif in the C-terminal regulatory domain of AMPK that is responsible for promoting Arf6 activation and, thus, inducing cell migration and invasion. These findings reveal a noncanonical role of AMPK in which its C-terminal regulatory domain serves as a GEF for Arf6 during glucose deprivation.


Asunto(s)
Factor 6 de Ribosilación del ADP , Glucosa , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
17.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865815

RESUMEN

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Protectores contra Radiación , Ácido Tauroquenodesoxicólico , Animales , Ácido Tauroquenodesoxicólico/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Protectores contra Radiación/farmacología , Ratones , Masculino , Intestinos/efectos de la radiación , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación
18.
Development ; 148(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35020873

RESUMEN

The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.


Asunto(s)
Región Branquial/crecimiento & desarrollo , Cabeza/crecimiento & desarrollo , Cuello/crecimiento & desarrollo , Cresta Neural/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/genética , Región Branquial/embriología , Diferenciación Celular/genética , Movimiento Celular/genética , Microambiente Celular/genética , Embrión de Pollo , Embrión de Mamíferos , Embrión no Mamífero , Desarrollo Embrionario/genética , Cabeza/embriología , Humanos , Mesodermo/crecimiento & desarrollo , Células Madre Multipotentes/citología , Cuello/embriología , Cresta Neural/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Organogénesis/genética , Microambiente Tumoral/genética , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
19.
Invest New Drugs ; 42(2): 185-195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372948

RESUMEN

Acquired resistance is a significant hindrance to clinical application of lenvatinib in unresectable hepatocellular carcinoma (HCC). Further in-depth investigation of resistance mechanisms can help to develop additional therapeutic strategies to overcome or delay resistance. In our study, two lenvatinib-resistant (LR) HCC cell lines were established by treatment with gradient increasing concentration of lenvatinib, named Hep3B-LR and HepG2-LR. Interestingly, continuous lenvatinib treatment reinforced epithelial-mesenchymal transition (EMT), cell migration, and cell invasion. Gene set enrichment analysis (GSEA) enrichment analysis of RNA-sequencing from Hep3B-LR and corresponding parental cells revealed that activation of Wnt signaling pathway was involved in this adaptive process. Active ß-catenin and its downstream target lymphoid enhancer binding factor 1 (LEF1) were significantly elevated in LR HCC cells, which promoted lenvatinib resistance through mediating EMT-related genes. Data analysis based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Program (TCGA) databases suggests that LEF1, as a key regulator of EMT, was a novel molecular target linked to lenvatinib resistance and poor prognosis in HCC. Using a small-molecule specific inhibitor ICG001 and knocking down LEF1 showed that targeting LEF1 restored the sensitivity of LR HCC cells to lenvatinib. Our results uncover upregulation of LEF1 confers lenvatinib resistance by facilitating EMT, cell migration, and invasion of LR HCC cells, indicating that LEF1 is a novel therapeutic target for overcoming acquired lenvatinib resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
20.
Microb Pathog ; 186: 106466, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036108

RESUMEN

Vibrio is an important group of aquatic animal pathogens, which has been identified as the main pathogenic factor causing mass summer mortality of Crassostrea gigas in northern China. This study aims to investigate the potential pathogenic mechanisms of Vibrio Cg5 isolate in C. gigas. We sequenced and annotated the genome of Vibrio Cg5 to analyze potential virulence factors. The gentamicin protection assays were performed with C. gigas primary cells to reveal the cell-invasive behavior of Cg5. The genome analysis showed that Cg5 was a strain of human disease-associated pathogen with multiple antibiotic resistance, and four virulence factors associated with intracellular survival were present in the genome. The gentamicin protection assays showed that Cg5 could potentially invade the cells of C. gigas, indicating that Cg5 could be a facultative intracellular pathogen of C. gigas. These results provide insights into the pathogenic mechanism of V. diabolicus, an emerging pathogenic Vibrio on aquatic animals, which would be valuable in preventing and controlling diseases in oysters.


Asunto(s)
Crassostrea , Vibrio , Animales , Humanos , Factores de Virulencia/genética , Fenotipo , Gentamicinas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda