Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Appl Environ Microbiol ; 89(3): e0008223, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36802222

RESUMEN

Some probiotic bifidobacteria are highly robust and shelf-stable, whereas others are difficult to produce, due to their sensitivity to stressors. This limits their potential use as probiotics. Here, we investigate the molecular mechanisms underlying the variability in stress physiologies of Bifidobacterium animalis subsp. lactis BB-12 and Bifidobacterium longum subsp. longum BB-46, by applying a combination of classical physiological characterization and transcriptome profiling. The growth behavior, metabolite production, and global gene expression profiles differed considerably between the strains. BB-12 consistently showed higher expression levels of multiple stress-associated genes, compared to BB-46. This difference, besides higher cell surface hydrophobicity and a lower ratio of unsaturated to saturated fatty acids in the cell membrane of BB-12, should contribute to its higher robustness and stability. In BB-46, the expression of genes related to DNA repair and fatty acid biosynthesis was higher in the stationary than in the exponential phase, which was associated with enhanced stability of BB-46 cells harvested in the stationary phase. The results presented herein highlight important genomic and physiological features contributing to the stability and robustness of the studied Bifidobacterium strains. IMPORTANCE Probiotics are industrially and clinically important microorganisms. To exert their health-promoting effects, probiotic microorganisms must be administered at high counts, while maintaining their viability at the time of consumption. In addition, intestinal survival and bioactivity are important criteria for probiotics. Although bifidobacteria are among the most well-documented probiotics, the industrial-scale production and commercialization of some Bifidobacterium strains is challenged by their high sensitivity to environmental stressors encountered during manufacturing and storage. Through a comprehensive comparison of the metabolic and physiological characteristics of 2 Bifidobacterium strains, we identify key biological markers that can serve as indicators for robustness and stability in bifidobacteria.


Asunto(s)
Bifidobacterium animalis , Probióticos , Probióticos/metabolismo , Intestinos/microbiología , Perfilación de la Expresión Génica/métodos , Bifidobacterium/metabolismo , Bifidobacterium animalis/genética
2.
Environ Res ; 236(Pt 1): 116680, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37500036

RESUMEN

Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the ß-cypermethrin (ß-CY) toxicity to Bacillus cereus GW-01, a recently described ß-CY degrader, and effects of antioxidants on ß-CY degradation. GW-01 exposed to ß-CY negatively affected the growth rate. The highest maximum specific growth rate (µm) appeared at 25 mg/L ß-CY. ß-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p < 0.01); but they are decreased as growth phase pronged, which is contrary to the ß-CY degradation by GW-01 cells obtaining from various growth phase. Ascorbic acid (Vc), tea polyphenols (TP), and adenosine monophosphate (AMP) improved the degradation through changing the physiological property of GW-01. TP and AMP prompted the expression of gene encoding ß-CY degradation in GW-01, while Vc does the opposite. Biofilm formation was significantly inhibited by ß-CY, while was significantly enhanced by certain concentrations of TP and AMP (p < 0.05); while cell surface hydrophobicity (CSH) was negatively associated with ß-CY concentrations from 25 to 100 mg/L, and these 4 antioxidants all boosted the CSH. Cells grown with ß-CY had lower levels of saturated fatty acids but increased levels of some unsaturated and branched fatty acids, and these antioxidants alleviated the FA composition changes and gene expression related with FA metabolism. We also mined transcriptome analyses at lag, logarithmic, and stationary phases, and found that ß-CY induced oxidative stress. The objective of this study was to elaborate characteristics in relation to the microbial resistance of pesticide poisoning and the efficiency of pesticide degradation, and to provide a promising method for improving pesticide degradation by microbes.


Asunto(s)
Antioxidantes , Plaguicidas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Bacillus cereus/metabolismo , Disponibilidad Biológica , Estrés Oxidativo , Plaguicidas/toxicidad , Ácidos Grasos , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología
3.
Appl Environ Microbiol ; 88(21): e0073222, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226960

RESUMEN

Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.


Asunto(s)
Deshidratación , Suelo , Humanos , Suelo/química , Propiedades de Superficie , Microbiología del Suelo , Sequías
4.
Arch Microbiol ; 204(12): 707, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36378329

RESUMEN

Microbial adhesion and transport are significantly influenced by their hydrophobicity. Various domains, such as biofouling, bioremediation, wastewater treatment, oil recovery, pathogenesis, implant infections, and several other microbial disciplines, make use of hydrophobicity assessment. One easy assay for assessing the microbial surface hydrophobicity is the microbial adhesion to hydrocarbons (MATH) test which works on the differential partitioning of microbes at a hydrocarbon-aqueous interface. Unfortunately, a standard protocol for this test is still unavailable, even though it has been widely studied and it is known that the results are sensitive to the operating parameters used. This study has been envisaged to investigate the effects of variations in the MATH test parameters on the hydrophobicity results. For this purpose, six different test parameters (vortex duration, phase separation period, hydrocarbon-aqueous phase volume ratio, hydrocarbon selection, absorbance wavelength, and suspension medium) were varied. Four different Gram-negative bacteria were used for experimentation. It was observed that except for phase separation period, all other test parameters significantly influenced the hydrophobicity results. Furthermore, the hydrocarbon saturation of the suspension medium was a critical factor for growth medium suspensions. This study is expected to guide researchers in selecting the appropriate values of test parameters for MATH tests and enhance our understanding of this technique and pave the way for developing a standardized protocol.


Asunto(s)
Adhesión Bacteriana , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Bacterias , Biodegradación Ambiental , Agua
5.
J Environ Manage ; 319: 115610, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35797907

RESUMEN

Solid non-aqueous phases (NAPs), such as silicone rubber, have been used extensively to improve the removal of volatile organic compounds (VOCs). However, the removal of VOCs is difficult to be further improved because the poor understanding of the mass transfer and reaction processes. Further, the conventional reactors were either complicated or uneconomical. In view of this, herein, an airlift bioreactor with silicone rubber was designed and investigated for dichloromethane (DCM) treatment. The removal efficiency of Reactor 1 (with silicone rubber) was significantly higher than that of Reactor 2 (without silicone rubber), with corresponding higher chloride ion and CO2 production. It was found that Reactor 1 achieved a much better DCM shock tolerance capability and biomass stability than Reactor 2. Silicone rubber not only enhanced the mass transfer in terms of both gas/liquid and gas/microbial phases, but also decreased the toxicity of DCM to microorganisms. Noteworthily, despite the identical inoculum used, the relative abundance of potential DCM-degrading bacteria in Reactor 1 (91.2%) was much higher than that in Reactor 2 (24.3%) at 216 h. Additionally, the silicone rubber could be automatically circulated in the airlift bioreactor due to the driven effect of the airflow, resulting in a significant reduction of energy consumption.


Asunto(s)
Cloruro de Metileno , Elastómeros de Silicona , Biodegradación Ambiental , Biomasa , Reactores Biológicos
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445157

RESUMEN

Proteus mirabilis-mediated CAUTIs are usually initiated by the adherence of bacteria to a urinary catheter surface. In this paper, three isolates of different origin and exhibiting different adhesion abilities were investigated in search of any changes in lipidome components which might contribute to P. mirabilis adhesion to catheters. Using GC-MS and LC-MS/MS techniques, 21 fatty acids and 27 phospholipids were identified in the examined cells. The comparison of the profiles of phospholipids and fatty acids obtained for catheter-attached cells and planktonic cells of the pathogens indicated C11:0 and PE 37:2 levels as values which could be related to P. mirabilis adhesion to a catheter, as well as cis C16:1, PE 32:0, PE 33:0, PE 38:2, PG 33:1, PG 34:0, PE 30:1, PE 32:1 and PG 30:2 levels as values which could be associated with cell hydrophobicity. Based on DiBAC4 (3) fluorescence intensity and an affinity to p-xylene, it was found that the inner membrane depolarization, as well as strong cell-surface hydrophobicity, were important for P. mirabilis adhesion to a silicone catheter. A generalized polarization of Laurdan showed lower values for P. mirabilis cells attached to the catheter surface than for planktonic cells, suggesting lower packing density of membrane components of the adherent cells compared with tightly packed, stiffened membranes of the planktonic cells. Taken together, these data indicate that high surface hydrophobicity, fluidization and depolarization of P. mirabilis cell membranes enable colonization of a silicone urinary catheter surface.


Asunto(s)
Ácidos Grasos/metabolismo , Fosfolípidos/metabolismo , Infecciones por Proteus/microbiología , Proteus mirabilis/fisiología , Catéteres Urinarios/microbiología , Adhesión Bacteriana , Humanos
7.
Yeast ; 37(1): 117-129, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826306

RESUMEN

Adherence of the fungus, Candida albicans, to biotic (e.g. human tissues) and abiotic (e.g. catheters) surfaces can lead to emergence of opportunistic infections in humans. The process of adhesion and further biofilm development depends, in part, on cell surface hydrophobicity (CSH). In this study, we compared the resistance of C. albicans strains with different CSH to the most commonly prescribed antifungal drug, fluconazole, and the newly described synergistic combination, fluconazole and gentamicin. The hydrophobic strain was more resistant to fluconazole due to, among others, overexpression of the ERG11 gene encoding the fluconazole target protein (CYP51A1, Erg11p), which leads to overproduction of ergosterol in this strain. Additionally, the hydrophobic strain displayed high efflux activity of the multidrug resistance Cdr1 pump due to high expression of the CDR1 gene. On the other hand, the hydrophobic C. albicans strain was more susceptible to fluconazole-gentamicin combination because of its different effect on lipid content in the two strains. The combination resulted in ergosterol depletion with subsequent Cdr1p mislocalization and loss of activity in the hydrophobic strain. We propose that C. albicans strains with different CSH may possess altered lipid metabolism and consequently may differ in their response to treatment.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/química , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Gentamicinas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Lípidos/análisis , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Sinergismo Farmacológico , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana
8.
Arch Microbiol ; 202(8): 2117-2125, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32506149

RESUMEN

Plastics composed of polyethylene are non-biodegradable and are mostly harmful to the environment. Literature studies documented that the extent of microbial degradation of low-density polyethylene (LDPE) seems to be insufficient and the underlying mechanisms of such degradation remain unexplored. In the present study, efforts were given to degrade LDPE by a recently isolated bacteria Enterobacter cloacae AKS7. Scanning electron microscopic (SEM) image, tensile strength, and weight loss analysis confirmed the efficient degradation of LDPE by AKS7. To investigate the mechanism, it was observed that with the progression of time, the extent of microbial colonization got increased considerably over the LDPE surface. It was also observed that the organism (AKS7) gradually increased the secretion of extracellular polymeric substances (EPS) suggesting the formation of efficient biofilm over the LDPE surface. Furthermore, to comprehend the role of cell-surface hydrophobicity towards biofilm formation, two mutants of AKS7 were screened that showed a considerable reduction in cell-surface hydrophobicity in contrast to its wild type. The result showed that the mutants revealed compromised LDPE degradation than wild-type cells of AKS7. Further investigation revealed that the mutant cells of AKS7 were incapable of adhering to LDPE in contrast to wild-type cells. Thus, the results demonstrated that the cell-surface hydrophobicity of AKS7 favors the development of microbial biofilm over LDPE that leads to the enhanced degradation of LDPE by AKS7. Therefore, the organism holds the assurance to be considered as a promising bio-remediating agent for the sustainable degradation of polythene-based hazardous waste.


Asunto(s)
Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Restauración y Remediación Ambiental , Polietileno/metabolismo , Adhesión Bacteriana/genética , Biodegradación Ambiental , Biopelículas , Genes Bacterianos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Mutación
9.
Med Mycol ; 58(7): 973-986, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31989170

RESUMEN

The emerging opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii [Ch], C. duobushaemulonii [Cd] and C. haemulonii var. vulnera[Chv]) are notable for their intrinsic antifungal resistance. Different clinical manifestations are associated with these fungal infections; however, little is known about their biology and potential virulence attributes. Herein, we evaluated some surface properties of 12 clinical isolates of Ch (n = 5), Cd (n = 4) and Chv (n = 3) as well as their virulence on murine macrophages and Galleria mellonella larvae. Scanning electron microscopy demonstrated the presence of homogeneous populations among the species of the C. haemulonii complex, represented by oval yeasts with surface irregularities able to form aggregates. Cell surface hydrophobicity was isolate-specific, exhibiting high (16.7%), moderate (25.0%) and low (58.3%) hydrophobicity. The isolates had negative surface charge, except for one. Mannose/glucose- and N-acetylglucosamine-containing glycoconjugates were evidenced in considerable amounts in all isolates; however, the surface expression of sialic acid was poorly detected. Cd isolates presented significantly higher amounts of chitin than Ch and Chv. Membrane sterol and lipid bodies, containing neutral lipids, were quite similar among all fungi studied. All isolates adhered to inert surfaces in the order: polystyrene > poly-L-lysine-coated glass > glass. Likewise, they interacted with murine macrophages in a quite similar way. Regarding in vivo virulence, the C. haemulonii species complex were able to kill at least 80% of the larvae after 120 hours. Our results evidenced the ability of C. haemulonii complex to produce potential surface-related virulence attributes, key components that actively participate in the infection process described in Candida spp.


Asunto(s)
Adhesividad/efectos de los fármacos , Antifúngicos/uso terapéutico , Candida/aislamiento & purificación , Candidiasis/tratamiento farmacológico , Candidiasis/fisiopatología , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Virulencia/efectos de los fármacos , Arthrodermataceae/aislamiento & purificación , Brasil , Humanos , Macrófagos/efectos de los fármacos , Esporas Fúngicas/ultraestructura
10.
Biofouling ; 36(10): 1227-1242, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412938

RESUMEN

A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.


Asunto(s)
Fenómenos Físicos , Adhesión Bacteriana , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie
11.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756387

RESUMEN

Members of the Sphingomonadales are renowned for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). However, little is known about the regulatory mechanisms of the degradative pathway. Using cross-feeding bioassay, a functional LuxI/LuxR-type acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) system was identified from Croceicoccus naphthovorans PQ-2, a member of the order Sphingomonadales. Inactivation of the QS system resulted in a significant decrease in PAHs degradation. The QS system positively controlled the expression of three PAH-degrading genes (ahdA1e, xylE and xylG) and a regulatory gene ardR, which are located on the large plasmid. Interestingly, the transcription levels of these three PAH-degrading genes were significantly down-regulated in the ardR mutant. In addition, bacterial cell surface hydrophobicity and cell morphology were altered in the QS-deficient mutant. Therefore, the QS system in strain PQ-2 positively regulates PAH degradation via two mechanisms: (i) by induction of PAH-degrading genes directly and/or indirectly; and (ii) by an increase of bacterial cell surface hydrophobicity. The findings of this study improve our understanding of how the QS system influences the degradation of PAHs, therefore facilitating the development of new strategies for the bioremediation of PAHs.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/genética , Hidrocarburos Policíclicos Aromáticos/química , Proteínas Represoras/genética , Transactivadores/genética , Factores de Transcripción/genética , Acil-Butirolactonas/metabolismo , Alphaproteobacteria/química , Proteínas Bacterianas/química , Biodegradación Ambiental , Regulación Bacteriana de la Expresión Génica/genética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Percepción de Quorum , Proteínas Represoras/química , Transactivadores/química , Factores de Transcripción/química
12.
Yeast ; 36(2): 107-115, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30477048

RESUMEN

Candida tropicalis is an emergent pathogen with a high rate of mortality associated with it; however, less is known about its pathogenic capacity. Biofilm formation (BF) has important clinical repercussions, and it begins with adherence to a substrate. The adherence capacity depends principally on the cell surface hydrophobicity (CSH) and, at a later stage, on specific adherence due to adhesins. The ALS family in C. tropicalis, implicated in adhesion and BF, is represented in several CTRG genes. In this study, we determined the biofilm-forming ability, the primary adherence, and the CSH of C. tropicalis, including six isolates from blood and seven from urine cultures. We also compared the expression of four CTRG ALS-like genes (CTRG_01028, CTRG_02293, CTRG_03786, and CTRG_03797) in sessile versus planktonic cells, selected for their possible contribution to BF. All the C. tropicalis strains were biofilm producers, related to its filamentation capacity; all the strains displayed a high adherence ability correlated to the CSH, and all the strains expressed the CTRG genes in both types of growth. Urine isolates present, although not significantly, higher CSH, adherence, and biofilm formation than blood isolates. This study reveals that three CTRG ALS-like genes-except CTRG_03797-were more upregulated in biofilm cells, although with a considerable variation in expression across the strains studied and between the CTRG genes. C. tropicalis present a high biofilm capacity, and the overexpression of several CTRG ALS-like genes in the sessile cells suggests a role by the course of the biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida tropicalis/genética , Candida tropicalis/fisiología , Moléculas de Adhesión Celular/metabolismo , Adhesión Celular , Proteínas Fúngicas/metabolismo , Sangre/microbiología , Candida tropicalis/aislamiento & purificación , Candida tropicalis/metabolismo , Candidiasis/microbiología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , España , Centros de Atención Terciaria , Orina/microbiología
13.
Biofouling ; 35(1): 59-74, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30727772

RESUMEN

Pseudomonas aeruginosa biofilm-associated infections are a serious medical problem, and new compounds and therapies acting through novel mechanisms are much needed. Herein, the authors report a ruthenium(IV) complex that reduces P. aeruginosa PAO1 biofilm formation by 84%, and alters biofilm morphology and the living-to-dead cell ratio at 1 mM concentration. Including the compound in the culture medium altered the pigments secreted by PAO1, and fluorescence spectra revealed a decrease in pyoverdine. Scanning electron microscopy showed that the ruthenium complex did not penetrate the bacterial cell wall, but accumulated on external cell structures. Fluorescence quenching experiments indicated strong binding of the ruthenium complex to both plasmid DNA and bovine serum albumin. Formamidopyrimidine DNA N-glycosylase (Fpg) protein digestion of plasmid DNA isolated after ruthenium(IV) complex treatment revealed the generation of oxidative stress, which was further proved by the observed upregulation of catalase and superoxide dismutase gene expression.


Asunto(s)
Bencimidazoles/farmacología , Biopelículas/efectos de los fármacos , Estrés Oxidativo , Pseudomonas aeruginosa/efectos de los fármacos , Rutenio/farmacología , Sideróforos/química , Animales , Sitios de Unión , Bovinos , Pared Celular/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Modelos Teóricos , Oligopéptidos , Plásmidos/metabolismo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/fisiología , Albúmina Sérica Bovina/química
14.
J Basic Microbiol ; 59(6): 591-598, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30900743

RESUMEN

This study aimed at the biodegradation of fenpropathrin by Rhodopseudomonas sp. strain PSB07-21 cultured under different growth modes. The biomass production, cell surface hydrophobicity and fenpropathrin biodegradation efficiency of the strain PSB07-21 cultured under the photoheterotrophic growth mode were better than that shown by the strain PSB07-21 cultured under the photoautotrophic or the chemotrophic growth mode. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis using cell-free protein extracts showed several distinct protein bands in the gels representing the strain PSB07-21 cultured under the photoheterotrophic growth mode. The fenpropathrin enzymatic degradation was clearly affected the bacterial growth mode. Results obtained from this study should improve our knowledge regarding fenpropathrin biodegradation under field conditions. Our findings can also be used to optimize the usage of Rhodopseudomonas sp. PSB07-21 in field applications.


Asunto(s)
Insecticidas/metabolismo , Piretrinas/metabolismo , Rhodopseudomonas/metabolismo , Contaminantes del Suelo/metabolismo , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biomasa , Medios de Cultivo , Rhodopseudomonas/crecimiento & desarrollo
15.
Molecules ; 24(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438460

RESUMEN

The biodegradation of petroleum hydrocarbons has many potential applications and has attracted much attention recently. The hydrocarbon-degrading bacterium BL-27 was isolated from petroleum-polluted soil and was compounded with surfactants to improve biodegradation. Its 16S rDNA and rpoD gene sequences indicated that it was a strain of Bacillus subtilis. Strain BL-27 had extensive adaptability and degradability within a broad range of temperatures (25-50 °C), pH (4.0-10.0) and salinity (0-50 g/L NaCl). Under optimal conditions (45 °C, pH 7.0, 1% NaCl), the strain was able to degrade 65% of crude oil (0.3%, w/v) within 5 days using GC-MS analysis. Notably, strain BL-27 had weak cell surface hydrophobicity. The adherence rate of BL-27 to n-hexadecane was 29.6% with sucrose as carbon source and slightly increased to 33.5% with diesel oil (0.3%, w/v) as the sole carbon source, indicating that the cell surface of BL-27 is relatively hydrophilic. The strain was tolerant to SDS, Tween 80, surfactin, and rhamnolipids at a concentration of 500 mg/L. The cell surface hydrophobicity reduced more with the addition of surfactants, while the chemical dispersants, SDS (50-100 mg/L) and Tween 80 (200-500 mg/L), significantly increased the strain's ability to biodegrade, reaching 75-80%. These results indicated that BL-27 has the potential to be used for the bioremediation of hydrocarbon pollutants and could have promising applications in the petrochemical industry.


Asunto(s)
Bacillus subtilis/metabolismo , Hidrocarburos/metabolismo , Petróleo/metabolismo , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , ARN Ribosómico 16S/genética
16.
Appl Microbiol Biotechnol ; 102(6): 2803-2815, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29417199

RESUMEN

Sphingomonads are isolated at exceptionally high frequency from organic polluted environments and assumed to be more hydrophobic than other Gram-negative bacteria. However, the potential roles of cell-surface hydrophobicity (CSH) in the cell survival in polluted environment, as well as the mechanisms underlying the CSH of sphingomonads, remain unclear. Sphingobium hydrophobicum C1T is a highly hydrophobic sphingomonad isolated from electronic-waste contaminated sediment. In this study, we found that exposure to the typical pollutants in electronic-waste contaminated sediment, such as the heavy metal ion Pb and the organic compound deca-brominated diphenyl ether (deca-BDE), resulted in the development of even higher CSH of the hydrophobic strain C1T; but no significant change was observed in the low CSH of its hydrophilic variant C2. The hydrophobic strain C1T achieved higher biomass yield in standing conditions and adsorbed more amounts of hydrophobic deca-BDE than its hydrophilic variant C2, suggesting that the high CSH potentially enhanced the adaptation of hydrophobic strain to colonize in sediment and adsorb hydrophobic nutrients. The identification of the bacterial cell-surface constituents showed that the high CSH of S. hydrophobicum was contributed greatly by outer-membrane proteins, particularly membrane transporters functioning as enhancers for nutrient uptake and stress sustainment. This study will enhance our understanding of the adaptive strategies of sphingomonads in contaminated environments. It will be of great importance to enhance the CSH of sphingomonads and utilize them in cleaning up the environment from organic pollution.


Asunto(s)
Adaptación Biológica , Residuos Electrónicos , Interacciones Hidrofóbicas e Hidrofílicas , Sphingomonadaceae/fisiología , Propiedades de Superficie , Adsorción , Proteínas de la Membrana Bacteriana Externa/metabolismo , Microbiología Ambiental , Contaminantes Ambientales/metabolismo , Éteres Difenilos Halogenados/metabolismo , Plomo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sphingomonadaceae/efectos de los fármacos , Sphingomonadaceae/aislamiento & purificación
17.
Ecotoxicol Environ Saf ; 151: 206-211, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29407558

RESUMEN

The present investigation was to study the effect of different non-ionic surfactants (Tween-80, Tween-60, Tween-40, Tween-20, Triton X-100) and a rhamnolipid biosurfactant on the degradation of fluorene by Paenibacillus sp. PRNK-6. An enhancement in the growth, as well as fluorene utilization by this strain were observed in the presence of biosurfactant and non-ionic surfactants except Tween-20 and Triton X-100. Triton X-100 and Tween-20 were toxic to this bacterium. The strain PRNK-6 utilized 75% of fluorene (280mg/L) in 24h in an unamended condition. On the other hand, the complete utilization of higher concentration fluorene (320mg/L) by this strain was noticed when the medium was amended with Tween-80 (1.5% v/v) within 24h of incubation. Whereas, 90.6%, 96.5% and 96.7% of fluorene (280mg/L) was utilized when amended with Tween-60 (3.5% v/v), Tween-40 (3% v/v) and biosurfactant (25mg/L) respectively. Biosurfactant promoted the fluorene degradation potential of PRNK-6 as 96.2% of 320mg/L fluorene was degraded within 24h. Further, the added tween series surfactants and a biosurfactant have increased the cell surface hydrophobicity of the PRNK-6. Thus correlating with the enhanced degradation of the fluorene.


Asunto(s)
Fluorenos/metabolismo , Glucolípidos/farmacología , Paenibacillus/efectos de los fármacos , Paenibacillus/metabolismo , Tensoactivos/farmacología , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Octoxinol/farmacología , Polisorbatos/farmacología
18.
J Dairy Res ; 85(3): 347-354, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29961439

RESUMEN

Evaluation of eleven candidate probiotic Lactobacillus strains isolated from human milk showed that some of the strains were well endowed with desirable cell surface and attachment attributes. The cell surface properties (hydrophobicity, auto-aggregation, attachment to collagen and HT-29 monolayer) of probiotic Lactobacillus species of human milk origin were compared with reference probiotic/ non-probiotic species and pathogenic strains. The bacterial adhesion to hydrocarbons (BATH) was determined using three aliphatic (Chloroform, n-Hexane and n-Octane) and two aromatic (Toluene and Xylene) solvents. Maximum affinity of Lactobacillus strains towards chloroform and toluene indicated the presence of low electron acceptor/ acidic surface components on cell surface of most of the strains. The highest value of per cent hydrophobicity was recorded with chloroform in HM1 (L. casei) (97·10 ± 3·35%) and LGG (98·92 ± 1·24%). A moderate auto-aggregation attribute was observed in all of our Lactobacillus isolates. Only HM10, HM12 and HM13 exhibited comparatively enhanced precipitation rate after 7 h of incubation period. The adhesion potential to collagen matrix was highest in LGG (26·94 ± 5·83%), followed by HM1 (11·07 ± 3·54%) and HM9 (10·85 ± 1·74%) whereas, on HT-29 cells, HM8 (14·99 ± 3·61%), HM3 (13·73 ± 1·14%) and HM1 (11·21 ± 3·18%) could adhere effectively. In this manner, we noticed that although the cell surface properties and adhesion prospective of probiotic bacteria were strain dependent, five of our isolates viz. HM1, HM3, HM8, HM9 and HM10 exhibited promising cell surface properties, which could be further targeted as indigenous probiotic.


Asunto(s)
Lactobacillus/fisiología , Leche Humana/microbiología , Probióticos , Adhesión Bacteriana , Fenómenos Químicos , Colágeno/metabolismo , Células HT29/microbiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lactobacillus/aislamiento & purificación , Especificidad de la Especie , Propiedades de Superficie
19.
Molecules ; 23(6)2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899233

RESUMEN

The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is well known for its ability to successfully degrade various mixtures of n-alkanes occurring in marine oil spills. For effective growth on these compounds, the bacteria possess the unique capability not only to incorporate but also to modify fatty intermediates derived from the alkane degradation pathway. High efficiency of both these processes provides better competitiveness for a single bacteria species among hydrocarbon degraders. To examine the efficiency of A. borkumensis to cope with different sources of fatty acid intermediates, we studied the growth rates and membrane fatty acid patterns of this bacterium cultivated on diesel, biodiesel and rapeseed oil as carbon and energy source. Obtained results revealed significant differences in both parameters depending on growth substrate. Highest growth rates were observed with biodiesel, while growth rates on rapeseed oil and diesel were lower than on the standard reference compound (hexadecane). The most remarkable observation is that cells grown on rapeseed oil, biodiesel, and diesel showed significant amounts of the two polyunsaturated fatty acids linoleic acid and linolenic acid in their membrane. By direct incorporation of these external fatty acids, the bacteria save energy allowing them to degrade those pollutants in a more efficient way. Such fast adaptation may increase resilience of A. borkumensis and allow them to strive and maintain populations in more complex hydrocarbon degrading microbial communities.


Asunto(s)
Alcanivoraceae/crecimiento & desarrollo , Carbono/metabolismo , Ácidos Grasos/análisis , Lípidos de la Membrana/análisis , Alcanivoraceae/química , Biodegradación Ambiental , Biocombustibles , Membrana Celular/química , Hidrocarburos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Aceite de Brassica napus/química
20.
Yeast ; 34(3): 129-137, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27862261

RESUMEN

Trichosporon asahii is a pathogenic basidiomycetous yeast. Individual strains of T. asahii have different colony morphologies. However, it is not clear whether cell surface phenotypes differ among the colony morphologies. Here we characterized the cell surface hydrophobicity and analysed the carbohydrate contents of the cell surface polysaccharides in T. asahii clinical isolates with various colony morphologies. Among the three distinctive colony morphologies obtained from one clinical isolate, the white-type morphology exhibited higher hydrophobicity. The hydrophobicity of heat-killed T. asahii cells was greatly reduced after periodate oxidation of the cell surface carbohydrates. Furthermore, the cell wall and extracellular polysaccharide components differed among the morphologies. Our results suggest that T. asahii cell surface hydrophobicity is affected by cell surface carbohydrate composition. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Trichosporon/fisiología , Biopelículas , Carbohidratos/análisis , Adhesión Celular , Membrana Celular/química , Membrana Celular/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Polisacáridos/análisis , Trichosporon/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda