Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Allergy Clin Immunol ; 132(2): 400-11.e9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23830147

RESUMEN

BACKGROUND: The capacity of CD8(+) T cells to control infections and mediate antitumor immunity requires the development and survival of effector and memory cells. IL-21 has emerged as a potent inducer of CD8(+) T-cell effector function and memory development in mouse models of infectious disease. However, the role of IL-21 and associated signaling pathways in protective CD8(+) T-cell immunity in human subjects is unknown. OBJECTIVE: We sought to determine which signaling pathways mediate the effects of IL-21 on human CD8(+) T cells and whether defects in these pathways contribute to disease pathogenesis in patients with primary immunodeficiencies caused by mutations in components of the IL-21 signaling cascade. METHODS: Human primary immunodeficiencies resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Lymphocytes from patients with loss-of-function mutations in signal transducer and activator of transcription 1 (STAT1), STAT3, or IL-21 receptor (IL21R) were used to assess the respective roles of these genes in human CD8(+) T-cell differentiation in vivo and in vitro. RESULTS: Mutations in STAT3 and IL21R, but not STAT1, led to a decrease in multiple memory CD8(+) T-cell subsets in vivo, indicating that STAT3 signaling, possibly downstream of IL-21R, regulates the memory cell pool. Furthermore, STAT3 was important for inducing the lytic machinery in IL-21-stimulated naive CD8(+) T cells. However, this defect was overcome by T-cell receptor engagement. CONCLUSION: The IL-21R/STAT3 pathway is required for many aspects of human CD8(+) T-cell behavior but in some cases can be compensated by other signals. This helps explain the relatively mild susceptibility to viral disease observed in STAT3- and IL-21R-deficient subjects.


Asunto(s)
Linfocitos T CD8-positivos/citología , Diferenciación Celular , Memoria Inmunológica , Síndrome de Job/genética , Mutación , Factor de Transcripción STAT3/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Humanos , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/metabolismo , Síndrome de Job/inmunología , Síndrome de Job/patología , Receptores de Interleucina-21/genética , Receptores de Interleucina-21/inmunología , Receptores de Interleucina-21/metabolismo , Factor de Transcripción STAT3/genética
2.
Genes Dis ; 9(2): 562-575, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35224167

RESUMEN

Regulatory T (Treg) cells constitute a dynamic population that is critical in autoimmunity. Treg cell therapies for autoimmune diseases are mainly focused on enhancing their suppressive activities. However, recent studies demonstrated that certain inflammatory conditions induce Treg cell instability with diminished FoxP3 expression and convert them into pathogenic effector cells. Therefore, the identification of novel targets crucial to both Treg cell function and plasticity is of vital importance to the development of therapeutic approaches in autoimmunity. In this study, we found that conditional Pp6 knockout (cKO) in Treg cells led to spontaneous autoinflammation, immune cell activation, and diminished levels of FoxP3 in CD4+ T cells in mice. Loss of Pp6 in Treg cells exacerbated two classical mouse models of Treg-related autoinflammation. Mechanistically, Pp6 deficiency increased CpG motif methylation of the FoxP3 locus by dephosphorylating Dnmt1 and enhancing Akt phosphorylation at Ser473/Thr308, leading to impaired FoxP3 expression in Treg cells. In summary, our study proposes Pp6 as a critical positive regulator of FoxP3 that acts by decreasing DNA methylation of the FoxP3 gene enhancer and inhibiting Akt signaling, thus maintaining Treg cell stability and preventing autoimmune diseases.

3.
Methods Mol Biol ; 1389: 71-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27460238

RESUMEN

Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis.


Asunto(s)
División Celular Asimétrica , Ciclo Celular , Proliferación Celular , Citometría de Flujo/métodos , Citometría de Imagen/métodos , Linfocitos/citología , Animales , Línea Celular , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda