Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2202018119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881806

RESUMEN

The triple oxygen isotope composition (Δ'17O) of sulfate minerals is widely used to constrain ancient atmospheric pO2/pCO2 and rates of gross primary production. The utility of this tool is based on a model that sulfate oxygen carries an isotope fingerprint of tropospheric O2 incorporated through oxidative weathering of reduced sulfur minerals, particularly pyrite. Work to date has targeted Proterozoic environments (2.5 billion to 0.542 billion years ago) where large isotope anomalies persist; younger timescale records, which would ground ancient environmental interpretation in what we know from modern Earth, are lacking. Here we present a high-resolution record of the [Formula: see text]O and Δ'17O in marine sulfate for the last 130 million years of Earth history. This record carries a Δ'17O close to 0o, suggesting that the marine sulfate reservoir is under strict control by biogeochemical cycling (namely, microbial sulfate reduction), as these reactions follow mass-dependent fractionation. We identify no discernible contribution from atmospheric oxygen on this timescale. We interpret a steady fractional contribution of microbial sulfur cycling (terrestrial and marine) over the last 100 million years, even as global weathering rates are thought to vary considerably.


Asunto(s)
Isótopos de Oxígeno , Agua de Mar , Sulfatos , Isótopos de Oxígeno/análisis , Agua de Mar/química , Agua de Mar/microbiología , Sulfatos/química , Óxidos de Azufre
2.
Proc Biol Sci ; 291(2026): 20240778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955231

RESUMEN

Mammals influence nearly all aspects of energy flow and habitat structure in modern terrestrial ecosystems. However, anthropogenic effects have probably altered mammalian community structure, raising the question of how past perturbations have done so. We used functional diversity (FD) to describe how the structure of North American mammal palaeocommunities changed over the past 66 Ma, an interval spanning the radiation following the K/Pg and several subsequent environmental disruptions including the Palaeocene-Eocene Thermal Maximum (PETM), the expansion of grassland, and the onset of Pleistocene glaciation. For 264 fossil communities, we examined three aspects of ecological function: functional evenness, functional richness and functional divergence. We found that shifts in FD were associated with major ecological and environmental transitions. All three measures of FD increased immediately following the extinction of the non-avian dinosaurs, suggesting that high degrees of ecological disturbance can lead to synchronous responses both locally and continentally. Otherwise, the components of FD were decoupled and responded differently to environmental changes over the last ~56 Myr.


Asunto(s)
Biodiversidad , Fósiles , Mamíferos , Animales , Mamíferos/fisiología , América del Norte , Ecosistema , Evolución Biológica
3.
Am J Bot ; 111(1): e16259, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38031479

RESUMEN

PREMISE: The rise of angiosperm-dominated tropical rainforests has been proposed to have occurred shortly after the Cretaceous-Paleogene transition. Paleocene fossil wood assemblages are rare yet provide important data for understanding these forests and whether their wood anatomical features can be used to document the changes that occurred during this transition. METHODS: We used standard techniques to section 11 fossil wood specimens of Paleocene-age, described the anatomy using standard terminology, and investigated their affinities to present-day taxa. RESULTS: We report here the first middle Paleocene fossil wood specimens from Myanmar, which at the time was near the equator and anchored to India. Some fossils share affinities with Arecaceae, Sapindales (Anacardiaceae, Meliaceae) and Moraceae and possibly Fabaceae or Lauraceae. One specimen is described as a new species and genus: Compitoxylon paleocenicum gen. et sp. nov. CONCLUSIONS: This assemblage reveals the long-lasting presence of these aforementioned groups in South Asia and suggests the early presence of multiple taxa of Laurasian affinity in Myanmar and India. The wood anatomical features of the dicotyledonous specimens reveal that both "modern" and "primitive" features (in a Baileyan scheme) are present with proportions similar to features in specimens from Paleocene Indian localities. Their anatomical diversity corroborates that tropical flora display "modern" features early in the history of angiosperms and that their high diversity remained steady afterward.


Asunto(s)
Fósiles , Magnoliopsida , Madera , Mianmar , India
4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649990

RESUMEN

Reconstructing Cenozoic history of continental silicate weathering is crucial for understanding Earth's carbon cycle and greenhouse history. The question of whether continental silicate weathering increased during the late Cenozoic, setting the stage for glacial cycles, has remained controversial for decades. Whereas numerous independent proxies of weathering in ocean sediments (e.g., Li, Sr, and Os isotopes) have been interpreted to indicate that the continental silicate weathering rate increased in the late Cenozoic, beryllium isotopes in seawater have stood out as an important exception. Beryllium isotopes have been interpreted to indicate stable continental weathering and/or denudation rates over the last 12 Myr. Here we present a Be cycle model whose results show that variations in the 9Be weathering flux are counterbalanced by near-coastal scavenging while the cosmogenic 10Be flux from the upper atmosphere stays constant. As a result, predicted seawater 10Be/9Be ratios remain nearly constant even when global denudation and Be weathering rates increase by three orders of magnitude. Moreover, 10Be/9Be records allow for up to an 11-fold increase in Be weathering and denudation rates over the late Cenozoic, consistent with estimates from other proxies. The large increase in continental weathering indicated by multiple proxies further suggests that the increased CO2 consumption by continental weathering, driven by mountain-building events, was counterbalanced by other geological processes to prevent a runaway icehouse condition during the late Cenozoic. These processes could include enhanced carbonate dissolution via pyrite weathering, accelerated oxidation of fossil organic carbon, and/or reduced basalt weathering as the climate cooled.

5.
New Phytol ; 239(2): 477-493, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37103892

RESUMEN

This review explores the evolution of extant South American tropical biomes, focusing on when and why they developed. Tropical vegetation experienced a radical transformation from being dominated by non-angiosperms at the onset of the Cretaceous to full angiosperm dominance nowadays. Cretaceous tropical biomes do not have extant equivalents; lowland forests, dominated mainly by gymnosperms and ferns, lacked a closed canopy. This condition was radically transformed following the massive extinction event at the Cretaceous-Paleogene boundary. The extant lowland tropical rainforests first developed at the onset of the Cenozoic with a multistratified forest, an angiosperm-dominated closed canopy, and the dominance of the main families of the tropics including legumes. Cenozoic rainforest diversity has increased during global warming and decreased during global cooling. Tropical dry forests emerged at least by the late Eocene, whereas other Neotropical biomes including tropical savannas, montane forests, páramo/puna, and xerophytic forest are much younger, greatly expanding during the late Neogene, probably at the onset of the Quaternary, at the expense of the rainforest.


Asunto(s)
Helechos , Magnoliopsida , Árboles , Ecosistema , Bosques , América del Sur , Clima Tropical
6.
Am J Bot ; 110(10): e16231, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661813

RESUMEN

PREMISE: Alismataceae, a sub-cosmopolitan family with ca. 17 genera and 113 species, is a large group of aquatic plants. Compression/impressions and bioinclusions of reproductive parts in amber support the documentation of the lineage in low-latitude North America. In Mexico, fossil aquatic plants have been infrequently documented. The new reproductive structures exhibit characteristics of Alismataceae, whose fossil record is mainly documented in the northern hemisphere through of fruits and seeds. METHODS: We described and compared 150 samples of reproductive structures preserved as impressions/compressions from the Oligocene Los Ahuehuetes locality in the state of Puebla, and two bioinclusions from the Miocene amber of Simojovel de Allende in the state of Chiapas, Mexico with extinct and extant taxa. Using a parsimony analysis based on 29 floral characters of 17 extant genera of the Alismataceae, we evaluated the relationship between the fossil material and potential living relatives. RESULTS: We discovered a new genus Nichima based on a perfect, actinomorphic flower with an expanded receptacle, three persistent sepals with multiple vasculatures, delicate and caducous petals, six stamens, and a gynoecium composed of three to more superior carpels, maturing into achenes. These characteristics resemble flowers of Alismataceae. Nichima represents an extinct member of the family, with two new species described here, Nichima magalloniae L. Hern., Cevallos-Ferriz et Hernández-Damián sp. nov. and Nichima gonzalez-medranoi L. Hern., Cevallos-Ferriz et Hernández-Damián, sp. nov. Their phylogenetic position suggests affinity with a clade that includes Baldiella, Echinodorus, and Alisma. CONCLUSIONS: Reproductive structures from the Cenozoic of Mexico support the identification of a new extinct genus, Nichima, evidencing the extensive history of Alismataceae in North America's low latitudes and suggesting a southern extension of the boreotropical flora.


Asunto(s)
Alismataceae , Filogenia , México , Ámbar , Flores , Fósiles
7.
Am J Bot ; 110(3): 1-16, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735676

RESUMEN

PREMISE: Passiflora is a diverse genus of ~570 extant species primarily distributed in the Americas, from the eastern United States to Argentina and Chile. Nevertheless, the known fossil record of Passiflora is small. To date, only two fossil seed species have been unequivocally assigned to the genus. In this contribution, rare sulcate seeds from Gray Fossil Site are described as a third fossil seed species of Passiflora. METHODS: Three partial seeds with sulcate sculpture from Gray Fossil Site, early Pliocene, Tennessee, USA, were examined, photographed, and measured. They were compared to samples of sulcate seeds from six extant Passiflora species in supersection Decaloba. A broader survey of sulcate seeds produced by modern species in the subgenera Decaloba, Deidamioides, and Tryphostemmatoides was done using published illustrations and descriptions. RESULTS: The Gray Fossil Site seeds are described as Passiflora sulcatasperma, sp. nov., and assigned to subgenus Decaloba, supersection Decaloba. They are characterized by their small size, elliptical shape, ridged-and-sulcate sculpture, rugulose ridges, and thin palisade seed coat. CONCLUSIONS: The two largest subgenera of Passiflora can be identified from Neogene fossils. Subgenus Decaloba is represented by two fossil seed species, P. bulgarica (Miocene, Bulgaria) and P. sulcatasperma (Pliocene, USA). Subgenus Passiflora is represented by fossil pollen (Miocene, Argentina and Brazil) and P. appalachiana seeds (Pliocene, USA). The distributions of fossil and modern species suggest that Passiflora may have used both North Atlantic and Antarctic routes to expand into Europe and the Asian-Oceanian Paleotropics, respectively.


Asunto(s)
Passiflora , Fósiles , Tennessee , Semillas , Polen , Filogenia
8.
Biol Lett ; 18(11): 20220398, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36416032

RESUMEN

Among social insects, army ants are exceptional in their voracious coordinated predation, nomadic life history and highly specialized wingless queens: the synthesis of these remarkable traits is referred to as the army ant syndrome. Despite molecular evidence that the army ant syndrome evolved twice during the mid-Cenozoic, once in the Neotropics and once in the Afrotropics, fossil army ants are markedly scarce, comprising a single known species from the Caribbean 16 Ma. Here we report the oldest army ant fossil and the first from the Eastern Hemisphere (EH), Dissimulodorylus perseus, preserved in Baltic amber dated to the Eocene. Using a combined morphological and molecular ultra conserved elements dataset spanning doryline lineages, we find that D. perseus is nested among extant EH army ants with affinities to Dorylus. Army ants are characterized by limited extant diversification throughout most of the Cenozoic; the discovery of D. perseus suggests an unexpected diversity of now-extinct army ant lineages in the Cenozoic, some of which were present in Continental Europe.


Asunto(s)
Hormigas , Animales , Conducta Predatoria , Fósiles , Región del Caribe , Europa (Continente)
9.
Geophys Res Lett ; 49(12): e2022GL098756, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865913

RESUMEN

The mechanisms driving crustal deformation and uplift of orogenic plateaus are fundamental to continental tectonics. Large-scale crustal flow has been hypothesized to occur in eastern Tibet, but it remains controversial due to a lack of geologic evidence. Geochemical and isotopic data from Cenozoic igneous rocks in the eastern Tibet-Gongga-Zheduo intrusive massif, provide a way to test this model. Modeling results suggest that Cenozoic magmas originated at depths of ∼30-40 km, the depth that crustal flow has been postulated to occur at. Detailed isotopic analyses indicate that the igneous rocks are derived from partial melting of the local Songpan-Ganzi crust, arguing against a long-distance crustal flow. Episodic magmatism during the Cenozoic showing a repeated shifting of magmatic sources can be correlated with crustal uplift. The continued indentation of the Indian Block and upwelling of the asthenosphere contribute to the crustal deformation, magmatism, and uplift.

10.
Proc Natl Acad Sci U S A ; 116(26): 12698-12703, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182613

RESUMEN

The fossil record of the large terrestrial mammals of the North American Cenozoic has previously been quantitatively summarized in six sequential episodes of faunal associations-"evolutionary faunas"-that correspond well with previously proposed qualitative "Chronofaunas." Here, we investigate the ecological spectrum of these faunas by classifying their major taxonomic components into discrete ecomorphological categories of diet, locomotion, and body size. To specifically address the potential influence of long-term climatic shifts on the ecomorphological composition of these faunas, we analyze via contingency tables and detrended correspondence analyses the frequency distribution of ecomorph types within faunas. We show that each evolutionary fauna has a unique, nonrandom association of ecomorphs, and we identify a long-term trend toward greater ecomorphological specialization over successive faunas during the past 66 My. Major vegetation shifts induced by climatic changes appear to underlie the ecomorphological dynamics of these six temporal associations that summarize Cenozoic North American mammalian evolutionary history.


Asunto(s)
Ecotipo , Evolución Molecular , Fósiles/anatomía & histología , Mamíferos/genética , Animales , Mamíferos/anatomía & histología
11.
Proc Biol Sci ; 288(1948): 20210281, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33823668

RESUMEN

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis, an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai-Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai-Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai-Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis, four vicariance events correlate well with the two early uplifts of the Qinghai-Tibetan Plateau during the Late Eocene and the Oligocene-Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


Asunto(s)
Ranunculaceae , Asia , Irán , Filogenia , Filogeografía , Tibet
12.
J Anat ; 239(2): 405-423, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33721329

RESUMEN

Rodents are the most diverse order of extant mammals, and caviomorph rodents, or New World hystricognaths, have a remarkable morphological disparity and a long fossil record that begins in the Eocene. Chinchilloidea is a poorly understood clade within Caviomorpha, from an evolutionary and phylogenetic perspective. It includes the extant families Chinchillidae and Dinomyidae, the extinct Neoepiblemidae and Cephalomyidae, and several extinct chinchilloids without a clear phylogenetic position, like Eoincamys, Borikenomys, Chambiramys, Ucayalimys, Incamys, Saremmys, Garridomys and Scotamys. The family Chinchillidae includes the extant Chinchilla and Lagidium, grouped in Chinchillinae, and the only living Lagostominae, Lagostomus maximus. Among extinct chinchillids, Eoviscaccia (early Oligocene-early Miocene of Argentina, Bolivia and Chile), Prolagostomus (early-middle Miocene of Argentina, Bolivia and Chile) and Pliolagostomus (early-middle Miocene of Argentina) are the only genera originally described as members of the family. Based on the study of specimens with unworn or little-worn cheek teeth, belonging to extinct and extant taxa, we propose homologies of the cheek teeth structures and perform a combined molecular and morphological phylogenetic analysis including extinct and extant taxa of all families of Chinchilloidea and all genera of Chinchillidae. Our phylogenetic analysis recovered three major lineages in the evolutionary history of Chinchilloidea. The first major lineage is composed of the extant taxa Chinchilla, Lagidium and Lagostomus, and the extinct genera Eoviscaccia, Prolagostomus, Pliolagostomus, Garridomys, Incamys, Loncolicu and Saremmys. Cephalomyid (Banderomys, Cephalomys, Litodontomys, Soriamys) and neoepiblemid (Neoepiblema, Perimys, Phoberomys, Scotamys) genera are part of the second major lineage, while dinomyids such as Dinomys, Drytomomys, Scleromys, 'Scleromys' and Tetrastylus constitute the third major lineage within Chinchilloidea. The phylogenetic position of some taxa previously considered as incertae sedis chinchilloids or without a clear suprageneric group (i.e. Incamys, Saremmys, Garridomys and Loncolicu) show that they belong to pan-Chinchillidae and conform the stem Chinchillidae along with Eoviscaccia. The euhypsodont crown Chinchillidae includes the living subfamilies Chinchillinae and Lagostominae. Dinomyidae and Eoincamys pascuali are recovered as the sisters of a major clade composed by 'Cephalomyidae'+Neopiblemidae and pan-Chinchillidae, and Chambiramys sylvaticus occupies a basal position to the same clade. Four major radiation events are identified in the evolutionary history of Chinchilloidea. The analysis of new morphological characters linked with molecular evidence as well as the addition of taxa of uncertain or unstable phylogenetic position or not considered in previous studies allowed us resolve part of the relationships within Chinchilloidea, particularly that of Chinchillidae, supporting preceding morphological hypotheses.


Asunto(s)
Evolución Biológica , Chinchilla/anatomía & histología , Filogenia , Diente/anatomía & histología , Animales , Chinchilla/genética
13.
Am J Bot ; 108(9): 1761-1774, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34591314

RESUMEN

PREMISE: Two Bignoniaceae stems with the distinctive anatomy of a liana are described from the Miocene of South America. They are the first fossil evidence of climbing habit in Bignoniaceae. METHODS: The fossil lianas are siliceous permineralizations. Transverse, tangential, and radial thin sections of the woods were prepared for study using standard petrographic techniques and observed under both light and scanning electron microscopy. RESULTS: The stems consist of wood and presumably bark (peripheral tissues). They exhibit phloem wedges, a cambial variant associated with the climbing habit in Bignoniaceae. The wood is diffuse-porous; solitary and in radial multiples vessels; alternated intervessel pitting; ray-vessel pitting with distinct borders; simple perforation plates; rays 1-3 seriate, composed of procumbent cells or body ray cells procumbent with one or two-row of upright or square marginal cells; fibers septate and non-septate, with simple to minutely bordered pits; axial parenchyma scanty paratracheal, vasicentric, septate; perforated ray cells; prismatic crystals in rays, and rays and fibers irregularly storied. The fossil stems are related to extant Dolichandra unguis-cati (L.) Miers. CONCLUSIONS: The fossils represent a new taxon, Dolichandra pacei sp. nov., which confirms the presence of a neotropical Bignoniaceae liana from the Miocene and provides the first and oldest evidence of the climbing habit in the family. Paleobotanical studies in the Mariño Formation, with the record of Bignoniaceae and Verbenaceae, and phylogenetic and biogeographical studies have great importance to understand plant evolution and diversification in South American Andes.


Asunto(s)
Bignoniaceae , Fósiles , Floema , Filogenia , América del Sur
14.
BMC Evol Biol ; 20(1): 97, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770933

RESUMEN

BACKGROUND: Was there a mid-Cenozoic vertebrate extinction and recovery event in Madagascar and, if so, what are its implications for the evolution of lemurs? The near lack of an early and mid-Cenozoic fossil record on Madagascar has inhibited direct testing of any such hypotheses. We compare the terrestrial vertebrate fauna of Madagascar in the Holocene to that of early Cenozoic continental Africa to shed light on the probability of a major mid-Cenozoic lemur extinction event, followed by an "adaptive radiation" or recovery. We also use multiple analytic approaches to test competing models of lemur diversification and the null hypothesis that no unusual mid-Cenozoic extinction of lemurs occurred. RESULTS: Comparisons of the terrestrial vertebrate faunas of the early Cenozoic on continental Africa and Holocene on Madagascar support the inference that Madagascar suffered a major mid-Cenozoic extinction event. Evolutionary modeling offers some corroboration, although the level of support varies by phylogeny and model used. Using the lemur phylogeny and divergence dates generated by Kistler and colleagues, RPANDA and TESS offer moderate support for the occurrence of unusual extinction at or near the Eocene-Oligocene (E-O) boundary (34 Ma). TreePar, operating under the condition of obligate mass extinction, found peak diversification at 31 Ma, and low probability of survival of prior lineages. Extinction at the E-O boundary received greater support than other candidate extinctions or the null hypothesis of no major extinction. Using the lemur phylogeny and divergence dates generated by Herrera & Dàvalos, evidence for large-scale extinction diminishes and its most likely timing shifts to before 40 Ma, which fails to conform to global expectations. CONCLUSIONS: While support for large-scale mid-Cenozoic lemur extinction on Madagascar based on phylogenetic modeling is inconclusive, the African fossil record does provide indirect support. Furthermore, a major extinction and recovery of lemuriforms during the Eocene-Oligocene transition (EOT) would coincide with other major vertebrate extinctions in North America, Europe, and Africa. It would suggest that Madagascar's lemurs were impacted by the climate shift from "greenhouse" to "ice-house" conditions that occurred at that time. This could, in turn, help to explain some of the peculiar characteristics of the lemuriform clade.


Asunto(s)
Evolución Biológica , Cambio Climático , Extinción Biológica , Fósiles , Lemur/clasificación , Animales , Madagascar , Filogenia
15.
Proc Biol Sci ; 287(1919): 20192876, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992170

RESUMEN

The size of plant stomata (adjustable pores that determine the uptake of CO2 and loss of water from leaves) is considered to be evolutionarily important. This study uses fossils from the major Southern Hemisphere family Proteaceae to test whether stomatal cell size responded to Cenozoic climate change. We measured the length and abundance of guard cells (the cells forming stomata), the area of epidermal pavement cells, stomatal index and maximum stomatal conductance from a comprehensive sample of fossil cuticles of Proteaceae, and extracted published estimates of past temperature and atmospheric CO2. We developed a novel test based on stochastic modelling of trait evolution to test correlations among traits. Guard cell length increased, and stomatal density decreased significantly with decreasing palaeotemperature. However, contrary to expectations, stomata tended to be smaller and more densely packed at higher atmospheric CO2. Thus, associations between stomatal traits and palaeoclimate over the last 70 million years in Proteaceae suggest that stomatal size is significantly affected by environmental factors other than atmospheric CO2. Guard cell length, pavement cell area, stomatal density and stomatal index covaried in ways consistent with coordinated development of leaf tissues.


Asunto(s)
Evolución Biológica , Estomas de Plantas/fisiología , Proteaceae/fisiología , Fósiles , Hojas de la Planta
16.
New Phytol ; 228(6): 1741-1747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31664713

RESUMEN

The fact that angiosperms are so species-rich and ecologically diverse - Darwin's second abominable mystery - could be explained by their ability to 'reinvent' themselves by evolving functional traits repeatedly over time, space and taxonomic clades. These trait innovations may facilitate adaptation and increase diversification rates. In this article, I quantify this 'trait flexibility' by reviewing the literature on trait transition rates and trait-dependent diversification rates in angiosperms and their extant sister clade, acrogymnosperms. I show that angiosperms indeed evolved elevated trait transition and trait-dependent diversification rates compared to gymnosperms, and rates are highest within species-rich angiosperm orders (e.g. Fabales, Lamiales). The (genetic) ability of certain angiosperm lineages to repeatedly evolve adaptive traits may have facilitated sustained high net diversification resulting from numerous episodic radiations.


Asunto(s)
Magnoliopsida , Evolución Biológica , Magnoliopsida/genética , Fenotipo , Filogenia
17.
Mol Phylogenet Evol ; 143: 106664, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31669816

RESUMEN

The ecological radiation of amphipods is striking among crustaceans. Despite high diversity, global distribution and key roles in all aquatic environments, little is known about their ecological transitions, evolutionary timescale and phylogenetic relationships. It has previously been proposed that the amphipod ecological diversification began in the Late Palaeozoic. By contrast, due to their affinity for cold/oxygenated water and absence of pre-Cenozoic fossils, we hypothesized that the ecological divergence of amphipods arose throughout the cool Late Mesozoic/Cenozoic. We tested our hypothesis by inferring a large-scale, time-calibrated, multilocus phylogeny, and reconstructed evolutionary patterns for major ecological traits. Although our results reveal a Late Palaeozoic amphipod origin, diversification and ecological divergence ensued only in the Late Mesozoic, overcoming a protracted stasis in marine littoral habitats. Multiple independent post-Jurassic radiations took place in deep-sea, freshwater, terrestrial, pelagic and symbiotic environments, usually postdating deep-sea faunal extinctions, and corresponding with significant climatic cooling, tectonic reconfiguration, continental flooding, and increased oceanic oxygenation. We conclude that the profound Late Mesozoic global changes triggered a tipping point in amphipod evolution by unlocking ecological opportunities that promoted radiation into many new niches. Our study also provides a solid, time-calibrated, evolutionary framework to accelerate research on this overlooked, yet globally important taxon.


Asunto(s)
Anfípodos/clasificación , Anfípodos/genética , Animales , Evolución Biológica , Fenómenos Ecológicos y Ambientales , Fósiles , Océanos y Mares , Filogenia
18.
Am J Bot ; 107(7): 1004-1020, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32643810

RESUMEN

PREMISE: Despite the fast pace of exploration of the patterns and processes influencing Neotropical plant hyperdiversity, the taxa explored are mostly from large groups that are widely distributed, morphologically diverse, or economically important. Vochysiaceae is an example of an undersampled taxon, providing an excellent system for investigating Neotropical biogeography. We present a phylogenomics-based hypothesis of species relationships in Vochysiaceae to investigate its evolutionary history through space and time. METHODS: We inferred a phylogeny for 122 species from Vochysiaceae and seven other families of Myrtales. Fossils from four myrtalean families were used to estimate the divergence times within Vochysiaceae. Historical biogeography was estimated using ancestral range probabilities and stochastic mapping. RESULTS: Monophyly of all genera was supported except for Qualea, which was split by Ruizterania into two clades. Vochysiaceae originated ~100 mya, splitting into an Afrotropical and a Neotropical lineage ~50 mya, and its ancestral range is in the area currently occupied by the Cerrado. CONCLUSIONS: The most recent common ancestor of Vochysiaceae + Myrtaceae had a West Gondwanan distribution, supporting a South American + African ancestral range of Vochysiaceae. On a global scale, geographic range reduction was the principal biogeographic event. At a finer scale, initial range reduction was also important and the Cerrado region was the most ancestral area with multiple colonization events to the Amazon, Central America, and the Atlantic Forest. Colonization events occurred from open areas to forest vegetation, an unusual finding regarding the evolution of plants in the Neotropics.


Asunto(s)
Myrtales , Teorema de Bayes , América Central , Filogenia , Filogeografía
19.
Proc Biol Sci ; 286(1902): 20190347, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039714

RESUMEN

The radiation of mammals after the Cretaceous/Palaeogene (K/Pg) boundary was a major event in the evolution of terrestrial ecosystems. Multiple studies point to increases in maximum body size and body size disparity, but patterns of disparity for other traits are less clear owing to a focus on different indices and subclades. We conducted an inclusive comparison of jaw functional disparity from the Early Jurassic-latest Eocene, using six mechanically relevant mandibular ratios for 256 species representing all major groups. Jaw functional disparity across all mammals was low throughout much of the Mesozoic and remained low across the K/Pg boundary. Nevertheless, the K/Pg boundary was characterized by a pronounced pattern of turnover and replacement, entailing a substantial reduction of non-therian and stem-therian disparity, alongside a marked increase in that of therians. Total mammal disparity exceeded its Mesozoic maximum for the first time during the Eocene, when therian mammals began exploring previously unoccupied regions of function space. This delay in the rise of jaw functional disparity until the Eocene probably reflects the duration of evolutionary recovery after the K/Pg mass extinction event. This contrasts with the more rapid expansion of maximum body size, which occurred in the Palaeocene.


Asunto(s)
Mamíferos/anatomía & histología , Mandíbula/anatomía & histología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Extinción Biológica , Fósiles/anatomía & histología , Filogenia
20.
Mol Phylogenet Evol ; 133: 128-140, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30584918

RESUMEN

The Glass Lizards are a subfamily (Anguinae) of Anguid Lizards with an elongated limbless body plan that occur throughout the Northern Hemisphere primarily in North America, Europe, and Asia, but also have a presence in North Africa and Indonesia. We used twenty-five nuclear loci (15,191 bp) and 2090 bp of the mtDNA genome to generate a phylogeny containing all known species groups to explore species relationships within the group as well as divergence dating. We also examined the group in the context of a coalescent species tree analysis and species delimitation. All major lineages were found to be monophyletic with potential cryptic diversity in some. The Anguinae first appeared in the Eocene and most lineages were present by the beginning of the Miocene. The Anguinae originated in Europe from an Anguidae ancestor that crossed the Thulean land bridge, spreading to Asia after the drying of the Turgai Sea, then across Beringia as the climate permitted. A species tree analyses found support for the major Anguinae lineages and species delimitation supported accepted species.


Asunto(s)
Lagartos/clasificación , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Geografía , Lagartos/genética , Mitocondrias/genética , Probabilidad , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda