Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Neurophysiol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356076

RESUMEN

In the rat, the activity of laryngeal adductor muscles, the crural diaphragm, and sympathetic vasomotor neurons is entrained to the post-inspiratory (post-I) phase of the respiratory cycle, a mechanism thought to enhance cardiorespiratory efficiency. The identity of the central neurons responsible for transmitting respiratory activity to these outputs remains unresolved. Here we explore the contribution of the Kölliker-Fuse/Parabrachial nuclei (KF-PBN) in the generation of post-I activity in vagal and sympathetic outputs under steady-state conditions and during acute hypoxemia, a condition that potently recruits post-I activity. In artificially ventilated, vagotomised and urethane-anesthetised rats, bilateral KF-PBN inhibition by microinjection of the GABAA receptor agonist isoguvacine evoked stereotypical responses on respiratory pattern, characterised by a reduction in phrenic nerve burst amplitude, a modest lengthening of inspiratory time, and an increase in breath-to-breath variability, while post-I vagal nerve activity was abolished and post-I sympathetic nerve activity diminished. During acute hypoxemia, KF-PBN inhibition attenuated tachypnoeic responses and completely abolished post-I vagal activity while preserving respiratory-sympathetic coupling. Furthermore, KF-PBN inhibition disrupted the decline in respiratory frequency that normally follows resumption of oxygenation. These findings suggest that the KF-PBN is a critical hub for the distribution of post-I activities to vagal and sympathetic outputs and is an important contributor to the dynamic adjustments to respiratory patterns that occur in response to acute hypoxia. While KF-PBN appears essential for post-I vagal activity, it only partially contributes to post-I sympathetic nerve activity, suggesting the contribution of multiple neural pathways to respiratory-sympathetic coupling.

2.
J Neurophysiol ; 132(3): 1087-1097, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140588

RESUMEN

Efferent muscle sympathetic nerve activity (MSNA) is under tonic baroreflex control. The arterial baroreflex exerts the strongest influence over medium-sized sympathetic action potential (AP) subpopulations in efferent MSNA recordings. Prior work from multiunit MSNA recordings has shown baroreflex loading selectively abolishes the sympathetic response to hypoxia. The purpose of the study was to examine baroreflex control over different-sized AP clusters and characterize the neural recruitment strategies of sympathetic AP subpopulations with baroreflex and combined baroreflex/chemoreflex (i.e., hypoxia) activation. We loaded the arterial baroreceptors [intravenous phenylephrine (PE)] alone and in combination with systemic hypoxia ([Formula: see text] 80%) in nine healthy young men. We extracted sympathetic APs using the wavelet-based methodology and quantified baroreflex gain for individual AP clusters. AP baroreflex threshold gain was measured as the slope of the linear relationship between AP probability versus diastolic blood pressure for 10 normalized clusters. Baroreflex loading with phenylephrine decreased MSNA and AP firing compared with baseline (all P < 0.05). However, the phenylephrine-mediated decrease in AP firing was lost with concurrent hypoxia (P = 0.384). Compared with baseline, baroreflex loading reduced medium-sized AP cluster baroreflex threshold slope (condition P = 0.005) and discharge probability (condition P < 0.0001); these reductions from baseline were maintained during simultaneous hypoxia (both P < 0.05). Present findings indicate a key modulatory role of the baroreceptors on medium-sized APs in blood pressure regulation that withstands competing signals from peripheral chemoreflex activation.NEW & NOTEWORTHY This study provides a novel understanding on baroreflex control of efferent sympathetic nervous system activity during competing stressors: baroreflex loading and peripheral chemoreflex activation. We show chemoreflex activation buffers baroreflex-mediated reductions in sympathetic nervous system activity. More importantly, baroreflex loading reduced baroreflex threshold gain of sympathetic action potential clusters and this reduction withstood chemoreflex activation. These data suggest the arterial baroreflex holds a primary regulatory role over medium-sized sympathetic neurons despite competing chemoreflex signals.


Asunto(s)
Potenciales de Acción , Barorreflejo , Hipoxia , Fenilefrina , Sistema Nervioso Simpático , Barorreflejo/fisiología , Barorreflejo/efectos de los fármacos , Masculino , Humanos , Sistema Nervioso Simpático/fisiología , Hipoxia/fisiopatología , Fenilefrina/farmacología , Adulto , Potenciales de Acción/fisiología , Adulto Joven , Presorreceptores/fisiología , Músculo Esquelético/fisiología , Presión Sanguínea/fisiología
3.
Am J Physiol Heart Circ Physiol ; 326(3): H705-H714, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241007

RESUMEN

Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.


Asunto(s)
Pentoxifilina , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Hemorreología , Factor de Necrosis Tumoral alfa , Hipoxia , Oxígeno , Aclimatación/fisiología , Inflamación/complicaciones , Gases , Circulación Cerebrovascular , Altitud
4.
Epilepsy Behav ; 157: 109848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823073

RESUMEN

OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.


Asunto(s)
Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia , Apnea Obstructiva del Sueño , Vigilia , Animales , Vigilia/fisiología , Masculino , Epilepsia/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Ratas , Enfermedad Crónica , Pilocarpina/toxicidad , Tronco Encefálico/fisiopatología , Frecuencia Cardíaca/fisiología , Electromiografía , Ratas Sprague-Dawley , Ratas Wistar
5.
J Physiol ; 601(24): 5495-5507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37119020

RESUMEN

Obstructive sleep apnoea (OSA), characterized by chronic intermittent hypoxia (CIH), is considered to be an independent risk for hypertension. The pathological cardiorespiratory consequences of OSA have been attributed to systemic oxidative stress, inflammation and sympathetic overflow induced by CIH, but an emerging body of evidence indicates that a nitro-oxidative and pro-inflammatory milieu within the carotid body (CB) is involved in the potentiation of CB chemosensory responses to hypoxia, which contribute to enhance the sympathetic activity. Accordingly, autonomic and cardiovascular alterations induced by CIH are critically dependent on an abnormally heightened CB chemosensory input to the nucleus of tractus solitarius (NTS), where second-order neurons project onto the rostral ventrolateral medulla (RVLM), activating pre-sympathetic neurons that control pre-ganglionic sympathetic neurons. CIH produces oxidative stress and neuroinflammation in the NTS and RVLM, which may contribute to the long-term irreversibility of the CIH-induced alterations. This brief review is mainly focused on the contribution of nitro-oxidative stress and pro-inflammatory molecules on the hyperactivation of the hypoxic chemoreflex pathway including the CB and the brainstem centres, and whether the persistence of autonomic and cardiorespiratory alterations may depend on the glial-related neuroinflammation induced by the enhanced CB chemosensory afferent input.


Asunto(s)
Cuerpo Carotídeo , Apnea Obstructiva del Sueño , Humanos , Cuerpo Carotídeo/fisiología , Enfermedades Neuroinflamatorias , Hipoxia , Inflamación/metabolismo , Estrés Oxidativo
6.
J Physiol ; 601(19): 4251-4262, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37635691

RESUMEN

We examined two assumptions of the modified rebreathing technique for the assessment of the ventilatory central chemoreflex (CCR) and cerebrovascular CO2 reactivity (CVR), hypothesizing: (1) that rebreathing abolishes the gradient between the partial pressures of arterial and brain tissue CO2 [measured via the surrogate jugular venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and arterial P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference (Pjv-a CO2 )] and (2) rebreathing eliminates the capacity of CVR to influence the Pjv-a CO2 difference, and thus affect CCR sensitivity. We also evaluated these variables during two separate dynamic end-tidal forcing (ETF) protocols (termed: ETF-1 and ETF-2), another method of assessing CCR sensitivity and CVR. Healthy participants were included in the rebreathing (n = 9), ETF-1 (n = 11) and ETF-2 (n = 10) protocols and underwent radial artery and internal jugular vein (advanced to jugular bulb) catheterization to collect blood samples. Transcranial Doppler ultrasound was used to measure middle cerebral artery blood velocity (MCAv). The Pjv-a CO2 difference was not abolished during rebreathing (6.2 ± 2.6 mmHg; P < 0.001), ETF-1 (9.3 ± 1.5 mmHg; P < 0.001) or ETF-2 (8.6 ± 1.4 mmHg; P < 0.001). The Pjv-a CO2 difference did not change during the rebreathing protocol (-0.1 ± 1.2 mmHg; P = 0.83), but was reduced during the ETF-1 (-3.9 ± 1.1 mmHg; P < 0.001) and ETF-2 (-3.4 ± 1.2 mmHg; P = 0.001) protocols. Overall, increases in MCAv were associated with reductions in the Pjv-a CO2 difference during ETF (-0.095 ± 0.089 mmHg cm-1  s-1 ; P = 0.001) but not during rebreathing (-0.028 ± 0.045 mmHg · cm-1  · s-1 ; P = 0.067). These findings suggest that, although the Pjv-a CO2 is not abolished during any chemoreflex assessment technique, hyperoxic hypercapnic rebreathing is probably more appropriate to assess CCR sensitivity independent of cerebrovascular reactivity to CO2 . KEY POINTS: Modified rebreathing is a technique used to assess the ventilatory central chemoreflex and is based on the premise that the rebreathing method eliminates the difference between arterial and brain tissue P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Therefore, rebreathing is assumed to isolate the ventilatory response to central chemoreflex stimulation from the influence of cerebral blood flow. We assessed these assumptions by measuring arterial and jugular venous bulb P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and middle cerebral artery blood velocity during modified rebreathing and compared these data against data from another test of the ventilatory central chemoreflex using hypercapnic dynamic end-tidal forcing. The difference between arterial and jugular venous bulb P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ remained present during both rebreathing and end-tidal forcing tests, whereas middle cerebral artery blood velocity was associated with the P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference during end-tidal forcing but not rebreathing. These findings offer substantiating evidence that clarifies and refines the assumptions of modified rebreathing tests, enhancing interpretation of future findings.


Asunto(s)
Dióxido de Carbono , Venas Yugulares , Humanos , Hipercapnia , Arteria Cerebral Media/fisiología , Circulación Cerebrovascular/fisiología
7.
J Physiol ; 601(10): 2017-2041, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017488

RESUMEN

Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.


Asunto(s)
Acidosis , Hipotensión , Isquemia Miocárdica , Femenino , Ovinos , Embarazo , Animales , Humanos , Desaceleración , Frecuencia Cardíaca Fetal/fisiología , Cordón Umbilical/irrigación sanguínea , Feto , Hipoxia , Hipoxia Fetal
8.
Am J Physiol Heart Circ Physiol ; 325(4): H675-H686, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505474

RESUMEN

The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.


Asunto(s)
Sistema Nervioso Autónomo , Músculo Esquelético , Músculo Esquelético/irrigación sanguínea , Barorreflejo/fisiología , Ejercicio Físico/fisiología , Presión Sanguínea/fisiología , Arterias , Sistema Nervioso Simpático
9.
Exp Physiol ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153366

RESUMEN

At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2 /H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2 -responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2 -induced vascular contraction. Although blood flow can influence tissue CO2 /H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2 /H+ -induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2 /H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2 /H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2 /H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.

10.
Am J Obstet Gynecol ; 228(5S): S1117-S1128, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34801443

RESUMEN

Uterine contractions during labor and engagement of the fetus in the birth canal can compress the fetal head. Its impact on the fetus is unclear and still controversial. In this integrative physiological review, we highlight evidence that decelerations are uncommonly associated with fetal head compression. Next, the fetus has an impressive ability to adapt to increased intracranial pressure through activation of the intracranial baroreflex, such that fetal cerebral perfusion is well-maintained during labor, except in the setting of prolonged systemic hypoxemia leading to secondary cardiovascular compromise. Thus, when it occurs, fetal head compression is not necessarily benign but does not seem to be a common contributor to intrapartum decelerations. Finally, the intracranial baroreflex and the peripheral chemoreflex (the response to acute hypoxemia) have overlapping efferent effects. We propose the hypothesis that these reflexes may work synergistically to promote fetal adaptation to labor.


Asunto(s)
Desaceleración , Trabajo de Parto , Embarazo , Femenino , Humanos , Parto , Trabajo de Parto/fisiología , Hipoxia , Feto/fisiología , Frecuencia Cardíaca Fetal/fisiología , Cardiotocografía
11.
Neuroimmunomodulation ; 30(1): 102-112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37232031

RESUMEN

Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.


Asunto(s)
Inflamación , Núcleo Solitario , Ratas , Ratones , Animales , Núcleo Solitario/fisiología , Neuronas , Sistema Nervioso Autónomo , Hipotálamo , Sistema Nervioso Simpático , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología
12.
BJOG ; 130(8): 881-890, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808862

RESUMEN

OBJECTIVE: Deceleration area (DA) and capacity (DC) of the fetal heart rate can help predict risk of intrapartum fetal compromise. However, their predictive value in higher risk pregnancies is unclear. We investigated whether they can predict the onset of hypotension during brief hypoxaemia repeated at a rate consistent with early labour in fetal sheep with pre-existing hypoxaemia. DESIGN: Prospective, controlled study. SETTING: Laboratory. SAMPLE: Chronically instrumented, unanaesthetised near-term fetal sheep. METHODS: One-minute complete umbilical cord occlusions (UCOs) were performed every 5 minutes in fetal sheep with baseline pa O2 <17 mmHg (hypoxaemic, n = 8) and >17 mmHg (normoxic, n = 11) for 4 hours or until arterial pressure fell <20 mmHg. MAIN OUTCOME MEASURES: DA, DC and arterial pressure. RESULTS: Normoxic fetuses showed effective cardiovascular adaptation without hypotension and mild acidaemia (lowest arterial pressure 40.7 ± 2.8 mmHg, pH 7.35 ± 0.03). Hypoxaemic fetuses developed hypotension (lowest arterial pressure 20.8 ± 1.9 mmHg, P < 0.001) and acidaemia (final pH 7.07 ± 0.05). In hypoxaemic fetuses, decelerations showed faster falls in FHR over the first 40 seconds of UCOs but the final deceleration depth was not different to normoxic fetuses. DC was modestly higher in hypoxaemic fetuses during the penultimate (P = 0.04) and final (P = 0.012) 20 minutes of UCOs. DA was not different between groups. CONCLUSION: Chronically hypoxaemic fetuses had early onset of cardiovascular compromise during labour-like brief repeated UCOs. DA was unable to identify developing hypotension in this setting, while DC only showed modest differences between groups. These findings highlight that DA and DC thresholds need to be adjusted for antenatal risk factors, potentially limiting their clinical utility.


Asunto(s)
Acidosis , Hipotensión , Animales , Femenino , Embarazo , Acidosis/etiología , Feto , Frecuencia Cardíaca Fetal/fisiología , Hipotensión/complicaciones , Hipoxia/complicaciones , Estudios Prospectivos , Ovinos , Cordón Umbilical/irrigación sanguínea
13.
Blood Press ; 32(1): 2232873, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37470450

RESUMEN

Uncontrolled hypertension drives the global burden of increased cardiovascular disease (CVD) morbidity and mortality. Although high blood pressure (BP) is treatable and preventable, only half of the patients with hypertension undergoing treatment have their BP controlled. The failure of polypharmacy to attain adequate BP control may be due to a lack of physiological response, however, medication non-adherence and clinician inertia to increase treatment intensity are critical factors associated with poor hypertension management. The long-time medication titration, lifelong drug therapy, and often multi-drug treatment strategy are frustrating when the BP goal is not achieved, leading to increased CVD risk and a substantial burden on the healthcare system. Growing evidence indicates that neurohumoral activation is critical in initiating and maintaining elevated BP and its adverse consequences. Over the past decades, device-based therapies targeting the mechanisms underlying hypertension pathophysiology have been extensively studied. Among these, robust clinical experience for hypertension management exists for renal denervation (RDN) and baroreflex activation therapy (BAT), carotid body denervation (CBD), central arteriovenous anastomosis, and to a lesser extent, deep brain stimulation. Future studies are warranted to define the role of device-based approaches as an alternative or adjunctive treatment option to treat hypertension.


Systemic hypertension is a growing contributor to global disease burden and premature cause of death worldwide.The percentage of patients achieving target BP levels remains largely inadequate.Hypertension is characterised by activation of the sympathetic nervous system, with the magnitude depending on age and the disease severity.Device-based interventions have been extensively studied to directly target the relevant sympathetic neural pathophysiological mechanisms involved in BP control.Modulation of the chronic sympathetic outflow with CBD or BAT shows promise for the treatment of poorly controlled hypertension in addition to antihypertensive medicines.The BP response to device-based therapies appears variable and cannot be predicted before the procedure.Until more robust evidence related to patient selection, procedural and technical aspects is available, chemoreflex and baroreflex neuromodulation therapy should be restricted to randomised sham-controlled trials performed in experienced centres.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Antihipertensivos/uso terapéutico , Antihipertensivos/farmacología , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/etiología , Seno Carotídeo , Riñón , Resultado del Tratamiento
14.
Adv Exp Med Biol ; 1427: 107-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322341

RESUMEN

Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Anciano , Ratas , Humanos , Animales , Células Quimiorreceptoras/fisiología , Cuerpo Carotídeo/fisiología , Fenómenos Fisiológicos Respiratorios , Hipercapnia
15.
Adv Exp Med Biol ; 1427: 23-33, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322332

RESUMEN

The main question of this chapter is as follows: What is the contribution of changes in the sympathetic-respiratory coupling to the hypertension observed in some experimental models of hypoxia? Although there is evidence supporting the concept that sympathetic-respiratory coupling is increased in different models of experimental hypoxia [chronic intermittent hypoxia (CIH) and sustained hypoxia (SH)], it was also observed that in some strains of rats and in mice, these experimental models of hypoxia do not affect the sympathetic-respiratory coupling and the baseline arterial pressure. The data from studies performed in rats (different strains, male and female, and in the natural sleep cycle) and mice submitted to chronic CIH or SH are critically discussed. The main message from these studies performed in freely moving rodents and in the in situ working heart-brainstem preparation is that experimental hypoxia changes the respiratory pattern, which correlates with increased sympathetic activity and may explain the hypertension observed in male and female rats previously submitted to CIH or SH.


Asunto(s)
Hipertensión , Roedores , Ratas , Masculino , Femenino , Ratones , Animales , Ratas Wistar , Sistema Nervioso Simpático , Hipertensión/etiología , Hipoxia/complicaciones
16.
J Physiol ; 600(11): 2669-2689, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35482235

RESUMEN

The purpose of this study was to determine whether there are sex differences in the cardiorespiratory and sympathetic neurocirculatory responses to central, peripheral, and combined central and peripheral chemoreflex activation. Ten women (29 ± 6 years, 22.8 ± 2.4 kg/m2 : mean ± SD) and 10 men (30 ± 7 years, 24.8 ± 3.2 kg/m2 ) undertook randomized 5 min breathing trials of: room air (eucapnia), isocapnic hypoxia (10% oxygen (O2 ); peripheral chemoreflex activation), hypercapnic hyperoxia (7% carbon dioxide (CO2 ), 50% O2 ; central chemoreflex activation) and hypercapnic hypoxia (7% CO2 , 10% O2 ; central and peripheral chemoreflex activation). Control trials of isocapnic hyperoxia (peripheral chemoreflex inhibition) and hypocapnic hyperoxia (central and peripheral chemoreflex inhibition) were also included. Muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; finger photoplethysmography) and minute ventilation ( V̇$\dot{\rm{V}}$E ; pneumotachometer) were measured. Total MSNA (P = 1.000 and P = 0.616), MAP (P = 0.265) and V̇$\dot{\rm{V}}$E (P = 0.587 and P = 0.472) were not different in men and women during eucapnia and during isocapnic hypoxia. Women exhibited attenuated increases in V̇$\dot{\rm{V}}$E during hypercapnic hyperoxia (27.3 ± 6.3 vs. 39.5 ± 7.5 l/min, P < 0.0001) and hypercapnic hypoxia (40.9 ± 9.1 vs. 53.8 ± 13.3 l/min, P < 0.0001) compared with men. However, total MSNA responses were augmented in women (hypercapnic hyperoxia 378 ± 215 vs. 258 ± 107%, P = 0.017; hypercapnic hypoxia 607 ± 290 vs. 362 ± 268%, P < 0.0001). No sex differences in total MSNA, MAP or V̇$\dot{\rm{V}}$E were observed during isocapnic hyperoxia and hypocapnic hyperoxia. Our results indicate that young women have augmented sympathetic responses to central chemoreflex activation, which explains the augmented MSNA response to combined central and peripheral chemoreflex activation. KEY POINTS: Sex differences in the control of breathing have been well studied, but whether there are differences in the sympathetic neurocirculatory responses to chemoreflex activation between healthy women and men is incompletely understood. We observed that, compared with young men, young women displayed augmented increases in muscle sympathetic nerve activity during both hypercapnic hyperoxia (central chemoreflex activation) and hypercapnic hypoxia (central and peripheral chemoreflex activation) but had attenuated increases in minute ventilation. In contrast, no sex differences were found in either muscle sympathetic nerve activity or minute ventilation responses to isocapnic hypoxia (peripheral chemoreceptor stimulation). Young women have blunted ventilator, but augmented sympathetic responses, to central (hypercapnic hyperoxia) and combined central and peripheral chemoreflex activation (hypercapnic hypoxia), compared with young men. The possible causative association between the reduced ventilation and heightened sympathetic responses in young women awaits validation.


Asunto(s)
Hiperoxia , Adulto , Presión Sanguínea , Dióxido de Carbono , Células Quimiorreceptoras/fisiología , Femenino , Humanos , Hipercapnia , Hipoxia , Masculino , Oxígeno , Caracteres Sexuales , Sistema Nervioso Simpático/fisiología , Adulto Joven
17.
Rev Cardiovasc Med ; 23(2): 72, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35229563

RESUMEN

Heart failure with reduced ejection fraction is associated with increased exercise intolerance, morbidity, and mortality. Importantly, exercise intolerance in heart failure with reduced ejection fraction is a key factor limiting patient quality of life and survival. Exercise intolerance in heart failure with reduced ejection fraction stems from a multi-organ failure to maintain homeostasis at rest and during exercise, including the heart, skeletal muscle, and autonomic nervous system, lending itself to a system constantly trying to "catch-up". Hemodynamic control during exercise is regulated primarily by the autonomic nervous system, whose operation, in turn, is partly regulated via reflexive information from exercise-stimulated receptors throughout the body (e.g., arterial baroreflex, central and peripheral chemoreceptors, and the muscle metabo- and mechanoreflexes). Persons with heart failure with reduced ejection fraction exhibit malfunctioning autonomic reflexes, which lead to exaggerated sympathoexcitation and attenuated parasympathetic tone. Chronic elevation of sympathetic activity is associated with increased morbidity and mortality. In this review, we provide an overview of how each main exercise-related autonomic reflex is changed in heart failure with reduced ejection fraction, and the role of exercise training in attenuating or reversing the counterproductive changes.


Asunto(s)
Insuficiencia Cardíaca , Calidad de Vida , Ejercicio Físico/fisiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Hemodinámica , Humanos , Reflejo/fisiología , Volumen Sistólico
18.
FASEB J ; 35(5): e21532, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817828

RESUMEN

TWIK-related acid-sensitive potassium channels (TASKs)-like current was recorded in orexin neurons in the lateral hypothalamus (LH), which are essential in respiratory chemoreflex. However, the specific mechanism responsible for the pH-sensitivity remains elusive. Thus, we hypothesized that TASKs contribute to respiratory chemoreflex. In the present study, we found that TASK1 and TASK3 were expressed in orexin neurons. Blocking TASKs or microinjecting acid artificial cerebrospinal fluid (ACSF) in the LH stimulated breathing. In contrast, alkaline ACSF inhibited breathing, which was attenuated by blocking TASK1. Damage of orexin neurons attenuated the stimulatory effect on respiration caused by microinjection of acid ACSF (at a pH of 6.5) or TASKs antagonists. The orexinA-positive fiber and orexin type 1 receptor (OX1R) neurons were located in the nucleus tractus solitarius (NTS). The exciting effect of acidosis in the LH on respiration was inhibited by blocking OX1R of the NTS. Taken together, we conclude that orexin neurons sense the extracellular pH change through TASKs and regulate respiration by projecting to the NTS.


Asunto(s)
Área Hipotalámica Lateral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Orexinas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Reflejo/fisiología , Respiración , Núcleo Solitario/fisiología , Animales , Células Quimiorreceptoras/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Orexinas/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Ratas Sprague-Dawley
19.
Exp Physiol ; 107(12): 1507-1520, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177675

RESUMEN

NEW FINDINGS: What is the central question of this study? We assessed the test-retest variability of respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. What is the main finding and its importance? Modified rebreathing is a reproducible method to characterize responses of central and peripheral respiratory chemoreflexes. Signal averaging of multiple repeated tests minimizes within- and between-test variability, improves the confidence of chemoreflex characterization and reduces the minimal change in parameters required to establish an effect. Future experiments that apply this method might benefit from signal averaging to improve its discriminatory effect. ABSTRACT: We assessed the test-retest variability of central and peripheral respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. Over four laboratory visits, 13 participants (mean ± SD age, 25 ± 5 years) performed six repetitions of modified rebreathing in isoxic-hypoxic conditions [end-tidal P O 2 ${P_{{{\rm{O}}_{\rm{2}}}}}$ ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ )  = 50 mmHg] and isoxic-hyperoxic conditions ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$   = 150 mmHg). End-tidal P C O 2 ${P_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ( P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ ), P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ and minute ventilation ( V ̇ $\dot {\rm V}$ E ) were measured breath-by-breath, by gas analyser and pneumotachograph. The V ̇ $\dot {\rm V}$ E versus P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ relationships were fitted with a piecewise model to estimate the ventilatory recruitment threshold (VRT) and the slope above the VRT ( V ̇ $\dot {\rm V}$ E S). Breath-by-breath data from the three within- and between-day trials were averaged using two approaches [simple average (fit then average) and ensemble average (average then fit)] and compared with a single-trial fit. Variability was assessed by intraclass correlation (ICC) and coefficient of variance (CV), and the minimal detectable change was computed for each approach using two independent sets of three trials. Within days, the VRT and V ̇ $\dot {\rm V}$ E S exhibited excellent test-retest variability in both hyperoxic conditions (VRT: ICC = 0.965, CV = 2.3%; V ̇ $\dot {\rm V}$ E S: ICC = 0.932, CV = 15.5%) and hypoxic conditions (VRT: ICC = 0.970, CV = 2.9%; V ̇ $\dot {\rm V}$ E S: ICC = 0.891, CV = 17.2%). Between-day reproducibility was also excellent (hyperoxia, VRT: ICC = 0.930, CV = 2.2%; V ̇ $\dot {\rm V}$ E S: ICC = 0.918, CV = 14.2%; and hypoxia, VRT: ICC = 0.940, CV = 3.0%; V ̇ $\dot {\rm V}$ E S: ICC = 0.880, CV = 18.1%). Compared with a single-trial fit, there were no differences in VRT or V ̇ $\dot {\rm V}$ E S using the simple average or ensemble average approaches; however, ensemble averaging reduced the minimal detectable change for V ̇ $\dot {\rm V}$ E S from 2.95 to 1.39 L min-1  mmHg-1 (hyperoxia) and from 3.64 to 1.82 L min-1  mmHg-1 (hypoxia). Single trials of modified rebreathing are reproducible; however, signal averaging of repeated trials improves confidence in parameter estimation.


Asunto(s)
Hiperoxia , Humanos , Adulto Joven , Adulto , Células Quimiorreceptoras/fisiología , Mecánica Respiratoria/fisiología , Reproducibilidad de los Resultados , Reflejo/fisiología , Dióxido de Carbono , Hipoxia
20.
Acta Obstet Gynecol Scand ; 101(11): 1276-1281, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36004701

RESUMEN

INTRODUCTION: In the most recent recommendations of the International Federation of Gynecology and Obstetrics (FIGO), a chapter was dedicated to the physiological approach and to the description of fetal mechanisms developed to respond to hypoxia. Our objective was to classify the type of hypoxia in the case of metabolic acidemia and to describe the order of appearance of fetal heart rate abnormalities in cases of gradually evolving hypoxia. MATERIAL AND METHODS: 132 neonates born between 2018 and 2020 with acidemia were included. We excluded preterm birth, fetuses with congenital anomaly and twin pregnancies. Intrapartum cardiotocography traces were assigned to one of these four types of labor hypoxia: acute, subacute, gradually evolving and chronic hypoxia. For gradually evolving hypoxia, fetal heart rate abnormalities were described according to the FIGO classification. RESULTS: 36 cardiotocography traces (27.3%) were classified as acute hypoxia, 14 (10.6%) as subacute hypoxia, and 3 (3.2%) as chronic hypoxia; gradually evolving hypoxia occurred in 62 cases (47%). In 77.4% of cases of gradually evolving hypoxia, deceleration was the first anomaly to appear, with loss of variability and bradycardia appearing later. Increased fetal heart rate was observed immediately after late deceleration in 46.8% of cases and was followed by a loss of variability or saltatory rhythm in 37.1% of cases. CONCLUSIONS: In cases of metabolic acidemia at term, the most frequent situation observed was gradually evolving hypoxia, with an initial occurrence of decelerations. The sequence of fetal heart rate modifications was variable.


Asunto(s)
Acidosis , Enfermedades Fetales , Embarazo , Recién Nacido , Femenino , Humanos , Estudios Retrospectivos , Cardiotocografía , Frecuencia Cardíaca Fetal/fisiología , Acidosis/diagnóstico , Hipoxia/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda