Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Immunity ; 52(1): 109-122.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882361

RESUMEN

Recent work suggests that cholesterol metabolism impacts innate immune responses against infection. However, the key enzymes or the natural products and mechanisms involved are not well elucidated. Here, we have shown that upon DNA and RNA viral infection, macrophages reduced 7-dehydrocholesterol reductase (DHCR7) expression. DHCR7 deficiency or treatment with the natural product 7-dehydrocholesterol (7-DHC) could specifically promote phosphorylation of IRF3 (not TBK1) and enhance type I interferon (IFN-I) production in macrophages. We further elucidated that viral infection or 7-DHC treatment enhanced AKT3 expression and activation. AKT3 directly bound and phosphorylated IRF3 at Ser385, together with TBK1-induced phosphorylation of IRF3 Ser386, to achieve IRF3 dimerization. Deletion of DHCR7 and the DHCR7 inhibitors including AY9944 and the chemotherapy drug tamoxifen promoted clearance of Zika virus and multiple viruses in vitro or in vivo. Taken together, we propose that the DHCR7 inhibitors and 7-DHC are potential therapeutics against emerging or highly pathogenic viruses.


Asunto(s)
Deshidrocolesteroles/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Macrófagos/inmunología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Estomatitis Vesicular/inmunología , Células A549 , Animales , Línea Celular , Colesterol/metabolismo , Activación Enzimática/inmunología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Virus de la Estomatitis Vesicular Indiana/inmunología
2.
Trends Biochem Sci ; 47(4): 289-300, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35012873

RESUMEN

The sterol-sensing domain (SSD) is present in several membrane proteins that function in cholesterol metabolism, transport, and signaling. Recent progress in structural studies of SSD-containing proteins, such as sterol regulatory element-binding protein (SREBP)-cleavage activating protein (Scap), Patched, Niemann-Pick disease type C1 (NPC1), and related proteins, reveals a conserved core that is essential for their sterol-dependent functions. This domain, by its name, 'senses' the presence of sterol substrates through interactions and may modulate protein behaviors with changing sterol levels. We summarize recent advances in structural and mechanistic investigations of these proteins and propose to divide them to two classes: M for 'moderator' proteins that regulate sterol metabolism in response to membrane sterol levels, and T for 'transporter' proteins that harbor inner tunnels for cargo trafficking across cellular membranes.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteína Niemann-Pick C1 , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Esteroles/metabolismo
3.
Cell Mol Life Sci ; 81(1): 226, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775844

RESUMEN

Vemurafenib has been used as first-line therapy for unresectable or metastatic melanoma with BRAFV600E mutation. However, overall survival is still limited due to treatment resistance after about one year. Therefore, identifying new therapeutic targets for melanoma is crucial for improving clinical outcomes. In the present study, we found that lowering intracellular cholesterol by knocking down DHCR24, the limiting synthetase, impaired tumor cell proliferation and migration and abrogated the ability to xenotransplant tumors. More importantly, administration of DHCR24 or cholesterol mediated resistance to vemurafenib and promoted the growth of melanoma spheroids. Mechanistically, we identified that 27-hydroxycholesterol (27HC), a primary metabolite of cholesterol synthesized by the enzyme cytochrome P450 27A1 (CYP27A1), reproduces the phenotypes induced by DHCR24 or cholesterol administration and activates Rap1-PI3K/AKT signaling. Accordingly, CYP27A1 is highly expressed in melanoma patients and upregulated by DHCR24 induction. Dafadine-A, a CYP27A1 inhibitor, attenuates cholesterol-induced growth of melanoma spheroids and abrogates the resistance property of vemurafenib-resistant melanoma cells. Finally, we confirmed that the effects of cholesterol on melanoma resistance require its metabolite 27HC through CYP27A1 catalysis, and that 27HC further upregulates Rap1A/Rap1B expression and increases AKT phosphorylation. Thus, our results suggest that targeting 27HC may be a useful strategy to overcome treatment resistance in metastatic melanoma.


Asunto(s)
Proliferación Celular , Colestanotriol 26-Monooxigenasa , Colesterol , Hidroxicolesteroles , Melanoma , Células Madre Neoplásicas , Vemurafenib , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Colestanotriol 26-Monooxigenasa/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colesterol/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Lipid Res ; 65(6): 100555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719151

RESUMEN

Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.


Asunto(s)
Alquinos , Benzoxazinas , Encéfalo , Colesterol 24-Hidroxilasa , Ciclopropanos , Animales , Colesterol 24-Hidroxilasa/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratones , Benzoxazinas/farmacología , Benzoxazinas/administración & dosificación , Ciclopropanos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones Transgénicos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga
5.
J Lipid Res ; 65(1): 100483, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101620

RESUMEN

Apolipoprotein H (APOH) downregulation can cause hepatic steatosis and gut microbiota dysbiosis. However, the mechanism by which APOH-regulated lipid metabolism contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) remains undetermined. Herein, we aim to explore the regulatory effect of APOH, mediated through various pathways, on metabolic homeostasis and MASLD pathogenesis. We analyzed serum marker levels, liver histopathology, and cholesterol metabolism-related gene expression in global ApoH-/- C57BL/6 male mice. We used RNA sequencing and metabolomic techniques to investigate the association between liver metabolism and bacterial composition. Fifty-two differentially expressed genes were identified between ApoH-/- and WT mice. The mRNA levels of de novo lipogenesis genes were highly upregulated in ApoH-/- mice than in WT mice. Fatty acid, glycerophospholipid, sterol lipid, and triglyceride levels were elevated, while hyodeoxycholic acid levels were significantly reduced in the liver tissues of ApoH-/- mice than in those of WT mice. Microbial beta diversity was lower in ApoH-/- mice than in WT mice, and gut microbiota metabolic functions were activated in ApoH-/- mice. Moreover, ApoH transcripts were downregulated in patients with MASLD, and APOH-related differential genes were enriched in lipid metabolism. Open-source transcript-level data from human metabolic dysfunction-associated steatohepatitis livers reinforced a significant association between metabolic dysfunction-associated steatohepatitis and APOH downregulation. In conclusion, our studies demonstrated that APOH downregulation aggravates fatty liver and induces gut microbiota dysbiosis by dysregulating bile acids. Our findings offer a novel perspective on APOH-mediated lipid metabolic dysbiosis and provide a valuable framework for deciphering the role of APOH in fatty liver disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Metabolismo de los Lípidos/genética , beta 2 Glicoproteína I/genética , beta 2 Glicoproteína I/metabolismo , beta 2 Glicoproteína I/farmacología , Regulación hacia Abajo , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Ácidos Grasos/metabolismo
6.
J Biol Chem ; 299(2): 102883, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623732

RESUMEN

Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.


Asunto(s)
Hipercolesterolemia , Proteínas de Unión al GTP Monoméricas , Enfermedades por Prión , Animales , Ratones , Colesterol/metabolismo , Activación Enzimática , Retroalimentación , Hipercolesterolemia/etiología , Hipercolesterolemia/fisiopatología , Lipoproteínas LDL/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuronas/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo
7.
J Biol Chem ; 299(11): 105295, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774976

RESUMEN

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Asunto(s)
Biotinilación , Esteroles , Proteínas de Unión al GTP rab , Humanos , Colesterol/biosíntesis , Colesterol/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Esteroles/biosíntesis , Esteroles/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética
8.
J Biol Chem ; 299(1): 102733, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423680

RESUMEN

The cholesterol metabolites, oxysterols, play central roles in cholesterol feedback control. They modulate the activity of two master transcription factors that control cholesterol homeostatic responses, sterol regulatory element-binding protein-2 (SREBP-2) and liver X receptor (LXR). Although the role of exogenous oxysterols in regulating these transcription factors has been well established, whether endogenously synthesized oxysterols similarly control both SREBP-2 and LXR remains poorly explored. Here, we carefully validate the role of oxysterols enzymatically synthesized within cells in cholesterol homeostatic responses. We first show that SREBP-2 responds more sensitively to exogenous oxysterols than LXR in Chinese hamster ovary cells and rat primary hepatocytes. We then show that 25-hydroxycholesterol (25-HC), 27-hydroxycholesterol, and 24S-hydroxycholesterol endogenously synthesized by CH25H, CYP27A1, and CYP46A1, respectively, suppress SREBP-2 activity at different degrees by stabilizing Insig (insulin-induced gene) proteins, whereas 7α-hydroxycholesterol has little impact on SREBP-2. These results demonstrate the role of site-specific hydroxylation of endogenous oxysterols. In contrast, the expression of CH25H, CYP46A1, CYP27A1, or CYP7A1 fails to induce LXR target gene expression. We also show the 25-HC production-dependent suppression of SREBP-2 using a tetracycline-inducible CH25H expression system. To induce 25-HC production physiologically, murine macrophages are stimulated with a Toll-like receptor 4 ligand, and its effect on SREBP-2 and LXR is examined. The results also suggest that de novo synthesis of 25-HC preferentially regulates SREBP-2 activity. Finally, we quantitatively determine the specificity of the four cholesterol hydroxylases in living cells. Based on our current findings, we conclude that endogenous side-chain oxysterols primarily regulate the activity of SREBP-2, not LXR.


Asunto(s)
Colesterol , Receptores X del Hígado , Oxiesteroles , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Cricetinae , Ratones , Ratas , Células CHO , Colesterol/metabolismo , Colesterol 24-Hidroxilasa , Cricetulus , Homeostasis , Hidroxilación , Receptores X del Hígado/metabolismo , Oxiesteroles/metabolismo , Proteínas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
9.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627787

RESUMEN

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores Nucleares Huérfanos , Humanos , Receptores X del Hígado , Receptores Nucleares Huérfanos/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
10.
J Virol ; 97(12): e0151323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032198

RESUMEN

IMPORTANCE: The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Proteínas de la Membrana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hidroxiesteroides , Proteínas de la Membrana/metabolismo , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ubiquitinación , Línea Celular
11.
FASEB J ; 37(2): e22767, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36624701

RESUMEN

The primordial to primary follicle transition (PPT) in the ovary is critical to maintain sustainable reproductive resources in female mammals. However, it is unclear how granulosa cells (GCs) of the primary follicle participate in regulating PPT. This study focused on exploring the role of transcription factor Sp1 (SP1) in regulating PPT based on the fact that SP1 is pivotal for pregranulosa cell proliferation before primordial follicle formation. The results showed that mice fertility was prolonged when Sp1 was specifically depleted from GCs (GC- Sp1 -/- ). Besides, the PPT in GC- Sp1 -/- mice was reduced, resulting in more primordial follicles being preserved. Single-cell RNA-seq also indicated that the level of cholesterol metabolism was downregulated in GC- Sp1 -/- mice. Additionally, the PPT was promoted by either overexpression of ferredoxin-1 (FDX1), one of the key genes in mediating cholesterol metabolism or supplementing cholesterol for cultured fetal ovaries. Collectively, SP1 in GCs participates in the metabolism of cholesterol partially by regulating the transcription of Fdx1 during the PPT.


Asunto(s)
Células de la Granulosa , Folículo Ovárico , Femenino , Ratones , Animales , Folículo Ovárico/metabolismo , Células de la Granulosa/metabolismo , Ovario/metabolismo , Mamíferos , Metabolismo de los Lípidos
12.
Pharmacol Res ; 206: 107294, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992851

RESUMEN

Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor ß (GRß) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRß ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRß signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRß signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.


Asunto(s)
Ácido Aspártico , Tetracloruro de Carbono , Cirrosis Hepática , Hígado , Ratones Endogámicos C57BL , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Masculino , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ácido Aspártico/metabolismo , Ratones , Corticosterona , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Colesterol/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/patología , Ratones Noqueados
13.
Gastric Cancer ; 27(2): 308-323, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38270815

RESUMEN

BACKGROUND: Chromosome gains or localized amplifications are frequently observed in human gastric cancer (GC) and are major causes of aberrant oncogene activation. However, the significance of long non-coding RNAs (LncRNAs) in the above process is largely unknown. METHODS: The copy number aberrations (CNAs) data of GC samples were downloaded and analyzed from the TCGA database. qRT-PCR and fluorescence in situ hybridization were used to evaluate the expression of Linc01711 in GC. The effects of Linc01711 on GC progression were investigated through in vitro and in vivo assays. The mechanism of Linc01711 action was explored through transcriptome sequencing, chromatin immunoprecipitation sequencing, RNA immunoprecipitation, RNA pull-down and chromatin isolation by RNA purification (ChIRP) assays. RESULTS: We report for the first time a novel DNA copy number amplification-driven LncRNA on chromosome 20q13, designated Linc01711 in human GC, which is highly associated with malignant features. Functionally, Linc01711 significantly accelerates the proliferation and metastasis of GC. Mechanistically, Linc01711 acts as a modular scaffold to promote the binding of histone acetyltransferase HBO1 and histone demethylase KDM9. By coordinating the localization of the HBO1/KDM9 complex, Linc01711 specifies the histone modification pattern on the target genes, such as LPCAT1, and consequently facilitates the cholesterol synthesis, thereby contributing to tumor progression. CONCLUSIONS: Our findings suggest that copy number amplification-driven Linc01711 may serve as a promising prognostic predictor for GC patients and targeting Linc01711-related cholesterol metabolism pathway may be meaningful in anticancer strategies.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Variaciones en el Número de Copia de ADN , Código de Histonas , Hibridación Fluorescente in Situ , Línea Celular Tumoral , ARN , Colesterol , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
14.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38192042

RESUMEN

AIM: This study aimed to investigate the positive effect of natto powder on obese rats fed with a high-fat diet (HFD). METHODS AND RESULTS: Sprague-Dawley rats were fed with a HFD for 8 weeks continuously and gavaged with natto powder, respectively, for 8 weeks starting from the ninth week. The results showed that natto powder significantly reduced the body weight of rats and maintained the balance of cholesterol metabolism in the body by inhibiting the activity of liver X receptors (LXR) target genes, increasing the active expression of cholesterol 7 alpha-hydroxylase, and reducing the active expression of sterol-regulatory element-binding protein and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Furthermore, natto powder increased the relative abundance of potentially beneficial microbiota in gut and decreased the relative abundance of obesity-related harmful bacteria, and also increased the Bacteroidetes/Firmicutes ratio and improved the composition of gut microbiota. CONCLUSIONS: Natto powder maintains the balance of cholesterol metabolism by inhibiting the LXR pathway and regulating the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Alimentos de Soja , Ratas , Animales , Ratones , Polvos/farmacología , Receptores X del Hígado , Ratas Sprague-Dawley , Obesidad/microbiología , Dieta Alta en Grasa , Colesterol/metabolismo , Ratones Endogámicos C57BL
15.
Adv Exp Med Biol ; 1440: 163-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38036880

RESUMEN

Oxysterols or cholesterol oxidation products are a class of molecules with the sterol moiety, derived from oxidative reaction of cholesterol through enzymatic and non-enzymatic processes. They are widely reported in animal-origin foods and prove significant involvement in the regulation of cholesterol homeostasis, lipid transport, cellular signaling, and other physiological processes. Reports of oxysterol-mediated cytotoxicity are in abundance and thus consequently implicated in several age-related and lifestyle disorders such as cardiovascular diseases, bone disorders, pancreatic disorders, age-related macular degeneration, cataract, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and some types of cancers. In this chapter, we attempt to review a selection of physiologically relevant oxysterols, with a focus on their formation, properties, and roles in health and disease, while also delving into the potential of natural and synthetic molecules along with bacterial enzymes for mitigating oxysterol-mediated cell damage.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedades Neurodegenerativas , Oxiesteroles , Animales , Colesterol , Oxidación-Reducción , Esteroles
16.
Ecotoxicol Environ Saf ; 280: 116589, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878334

RESUMEN

Both epidemiological and experimental studies increasingly show that exposure to ambient fine particulate matter (PM2.5) is related to the occurrence and development of chronic diseases, such as metabolic diseases. However, whether PM2.5 has "exposure memory" and how these memories affect chronic disease development like hepatic metabolic homeostasis are unknown. Therefore, we aimed to explore the effects of exposure transition on liver cholesterol and bile acids (BAs) metabolism in mice. In this study, C57BL/6 mice were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure facility for an initial period of 10 weeks, followed by another 8 weeks of exposure switch (PM2.5 to FA and FA to PM2.5) comparing to non-switch groups (FA to FA and PM2.5 to PM2.5), which were finally divided into four groups (FF of FA to FA, PP of PM2.5 to PM2.5, PF of PM2.5 to FA, and FP of FA to PM2.5). Our results showed no significant difference in food intake, body composition, glucose homeostasis, and lipid metabolism between FA and PM2.5 groups after the initial exposure before the exposure switch. At the end of the exposure switch, the mice switched from FA to PM2.5 exposure exhibited a high sensitivity to late-onset PM2.5 exposure, as indicated by significantly elevated hepatic cholesterol levels and disturbed BAs metabolism. However, the mice switched from PM2.5 to FA exposure retained a certain memorial effects of previous PM2.5 exposure in hepatic cholesterol levels, cholesterol metabolism, and BAs metabolism. Furthermore, 18-week PM2.5 exposure significantly increased hepatic free BAs levels, which were completely reversed by the FA exposure switch. Finally, the changes in small heterodimeric partner (SHP) and nuclear receptor subfamily 5 group A member 2 (LRH1) in response to exposure switch mechanistically explained the above alterations. Therefore, mice switching from PM2.5 exposure to FA showed only a weak memory of prior PM2.5 exposure. In contrast, the early FA caused mice to be more susceptible to subsequent PM2.5 exposure.


Asunto(s)
Contaminantes Atmosféricos , Ácidos y Sales Biliares , Colesterol , Hígado , Ratones Endogámicos C57BL , Material Particulado , Animales , Material Particulado/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Colesterol/metabolismo , Ratones , Ácidos y Sales Biliares/metabolismo , Contaminantes Atmosféricos/toxicidad , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Tamaño de la Partícula
17.
Environ Toxicol ; 39(3): 1055-1071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37694961

RESUMEN

Cholesterol metabolism is crucial for cell survival and cancer progression. The prognostic patterns of genes linked to cholesterol metabolism (CMAGs) in CESC, however, have received very little attention in research. From public databases, TCGA-CESC cohorts with mRNA expression patterns and the accompanying clinical information of patients were gathered. Consensus clustering was used to find the molecular subtype connected to cholesterol metabolism. In the TCGA-CESC cohort, a predictive risk model with 28 CMAGs was created using Lasso-Cox regression. The function enrichment analysis between groups with high-and low-risk were investigated by employing GO, KEGG, and GSVA software. The immune cell infiltration was analyzed using ESTIMATE, CIBERSORT, and MCPCOUNTER methods. Finally, we select 7 genes in risk model for further multivariate Cox analysis, and ultimately a hub gene, CHIT1, was identified. Meanwhile, the function of CHIT1 was preliminarily verified in cell and mice tumor model. In conclusion, the abundance of the CHIT1 gene might be beneficial for forecasting the prognosis of CESC, demonstrating that cholesterol metabolism could be a promising treatment target for CESC.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Animales , Ratones , Femenino , Metabolismo de los Lípidos , Supervivencia Celular , Colesterol
18.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612682

RESUMEN

Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.


Asunto(s)
Neoplasias , Escualeno-Monooxigenasa , Humanos , Muerte Celular , Colesterol , Ácido Mevalónico , Neoplasias/genética , Escualeno-Monooxigenasa/genética
19.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674105

RESUMEN

Here, we target the high-density lipoprotein (HDL) proteome in a case series of 16 patients with post-COVID-19 symptoms treated with HMG-Co-A reductase inhibitors (statin) plus angiotensin II type 1 receptor blockers (ARBs) for 6 weeks. Patients suffering from persistent symptoms (post-acute sequelae) after serologically confirmed SARS-CoV-2 infection (post-COVID-19 syndrome, PCS, n = 8) or following SARS-CoV-2 vaccination (PVS, n = 8) were included. Asymptomatic subjects with corresponding serological findings served as healthy controls (n = 8/8). HDL was isolated using dextran sulfate precipitation and the HDL proteome of all study participants was analyzed quantitatively by mass spectrometry. Clinical symptoms were assessed using questionnaires before and after therapy. The inflammatory potential of the patients' HDL proteome was addressed in human endothelial cells. The HDL proteome of patients with PCS and PVS showed no significant differences; however, compared to controls, the HDL from PVS/PCS patients displayed significant alterations involving hemoglobin, cytoskeletal proteins (MYL6, TLN1, PARVB, TPM4, FLNA), and amyloid precursor protein. Gene Ontology Biological Process (GOBP) enrichment analysis identified hemostasis, peptidase, and lipoprotein regulation pathways to be involved. Treatment of PVS/PCS patients with statins plus ARBs improved the patients' clinical symptoms. After therapy, three proteins were significantly increased (FAM3C, AT6AP2, ADAM10; FDR < 0.05) in the HDL proteome from patients with PVS/PCS. Exposure of human endothelial cells with the HDL proteome from treated PVS/PCS patients revealed reduced inflammatory cytokine and adhesion molecule expression. Thus, HDL proteome analysis from PVS/PCS patients enables a deeper insight into the underlying disease mechanisms, pointing to significant involvement in metabolic and signaling disturbances. Treatment with statins plus ARBs improved clinical symptoms and reduced the inflammatory potential of the HDL proteome. These observations may guide future therapeutic strategies for PVS/PCS patients.


Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Lipoproteínas HDL , Proteoma , SARS-CoV-2 , Humanos , Proteoma/metabolismo , Masculino , COVID-19/sangre , COVID-19/virología , COVID-19/complicaciones , Femenino , Lipoproteínas HDL/sangre , Lipoproteínas HDL/metabolismo , Persona de Mediana Edad , SARS-CoV-2/efectos de los fármacos , Anciano , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Síndrome Post Agudo de COVID-19 , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Adulto
20.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731489

RESUMEN

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Asunto(s)
Ácido Gálico , Lipoproteínas LDL , Receptores de LDL , Humanos , Ácido Gálico/farmacología , Receptores de LDL/metabolismo , Células Hep G2 , Lipoproteínas LDL/metabolismo , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda