Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2400486121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976731

RESUMEN

Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.


Asunto(s)
Cromatóforos , Lagartos , Pigmentación de la Piel , Animales , Lagartos/genética , Lagartos/metabolismo , Lagartos/fisiología , Cromatóforos/metabolismo , Pigmentación de la Piel/genética , Pigmentación de la Piel/fisiología , Piel/metabolismo , Melanóforos/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Mol Ecol ; : e17458, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970414

RESUMEN

Colour signals play pivotal roles in different communication systems, and the evolution of these characters has been associated with behavioural ecology, integumentary production processes and perceptual mechanisms of the species involved. Here, we present the first insight into the molecular and histological basis of skin colour polymorphism within a miniaturized species of pumpkin toadlet, potentially representing the lowest size threshold for colour polytypism in tetrapods. Brachycephalus actaeus exhibits a coloration ranging from cryptic green to conspicuous orange skin, and our findings suggest that colour morphs differ in their capability to be detected by potential predators. We also found that the distribution and abundance of chromatophores are variable in the different colour morphs. The expression pattern of coloration related genes was predominantly associated with melanin synthesis (including dct, edn1, mlana, oca2, pmel, slc24a5, tyrp1 and wnt9a). Up-regulation of melanin genes in grey, green and brown skin was associated with higher melanophore abundance than in orange skin, where xanthophores predominate. Our findings provide a significant foundation for comparing and understanding the diverse pathways that contribute to the evolution of pigment production in the skin of amphibians.

3.
Photosynth Res ; 161(1-2): 5-19, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38466457

RESUMEN

The widespread use of disinfectants and antiseptics, and consequently their release into the environment, determines the relevance of studying their potential impact on the main producers of organic matter on the planet-photosynthetic organisms. The review examines the effects of some biguanides and quaternary ammonium compounds, octenidine, miramistin, chlorhexidine, and picloxidine, on the functioning of the photosynthetic apparatus of various organisms (Strakhovskaya et al. in Photosynth Res 147:197-209, 2021; Knox et al. in Photosynth Res 153:103, 2022; Paschenko et al. in Photosynth Res 155:93-105, 2023a, Photosynth Res 2023b). A common feature of these antiseptics is the combination of hydrophobic and hydrophilic regions in the molecules, the latter carrying a positive charge(s). The comparison of the results obtained with intact bacterial membrane vesicles (chromatophores) and purified pigment-protein complexes (photosystem II and I) of oxygenic organisms allows us to draw conclusions about the mechanisms of the cationic antiseptic action on the functional properties of the components of the photosynthetic apparatus.


Asunto(s)
Antiinfecciosos Locales , Fotosíntesis , Fotosíntesis/efectos de los fármacos , Antiinfecciosos Locales/farmacología , Luz , Cationes , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química
4.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33526592

RESUMEN

The construction of energetically autonomous artificial protocells is one of the most ambitious goals in bottom-up synthetic biology. Here, we show an efficient manner to build adenosine 5'-triphosphate (ATP) synthesizing hybrid multicompartment protocells. Bacterial chromatophores from Rhodobacter sphaeroides accomplish the photophosphorylation of adenosine 5'-diphosphate (ADP) to ATP, functioning as nanosized photosynthetic organellae when encapsulated inside artificial giant phospholipid vesicles (ATP production rate up to ∼100 ATP∙s-1 per ATP synthase). The chromatophore morphology and the orientation of the photophosphorylation proteins were characterized by cryo-electron microscopy (cryo-EM) and time-resolved spectroscopy. The freshly synthesized ATP has been employed for sustaining the transcription of a DNA gene, following the RNA biosynthesis inside individual vesicles by confocal microscopy. The hybrid multicompartment approach here proposed is very promising for the construction of full-fledged artificial protocells because it relies on easy-to-obtain and ready-to-use chromatophores, paving the way for artificial simplified-autotroph protocells (ASAPs).


Asunto(s)
Adenosina Trifosfato/biosíntesis , Células Artificiales/metabolismo , Cromatóforos Bacterianos/metabolismo , Transcripción Genética , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Células Artificiales/química , Cromatóforos Bacterianos/ultraestructura , Fotosíntesis , Rhodobacter sphaeroides/metabolismo , Luz Solar , Biología Sintética/métodos
5.
Biochemistry (Mosc) ; 88(10): 1428-1437, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38105015

RESUMEN

Measurement of electrical potential difference (Δψ) in membrane vesicles (chromatophores) from the purple bacterium Rhodobacter sphaeroides associated with the surface of a nitrocellulose membrane filter (MF) impregnated with a phospholipid solution in decane or immersed into it in the presence of exogenous mediators and disaccharide trehalose demonstrated an increase in the amplitude and stabilization of the signal under continuous illumination. The mediators were the ascorbate/N,N,N'N'-tetramethyl-p-phenylenediamine pair and ubiquinone-0 (electron donor and acceptor, respectively). Although stabilization of photoelectric responses upon long-term continuous illumination was observed for both variants of chromatophore immobilization, only the samples immersed into the MF retained the functional activity of reaction centers (RCs) for a month when stored in the dark at room temperature, which might be due to the preservation of integrity of chromatophore proteins inside the MF pores. The stabilizing effect of the bioprotector trehalose could be related to its effect on both the RC proteins and the phospholipid bilayer membrane. The results obtained will expand current ideas on the use of semi-synthetic structures based on various intact photosynthetic systems capable of converting solar energy into its electrochemical form.


Asunto(s)
Cromatóforos , Rhodobacter sphaeroides , Trehalosa , Iluminación , Cromatóforos/metabolismo , Fosfolípidos/metabolismo , Bacterias/metabolismo , Rhodobacter sphaeroides/metabolismo
6.
Biochemistry (Mosc) ; 88(10): 1417-1427, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38105014

RESUMEN

In the bioenergetics studies, the direct electrometric method played an important role. This method is based on measuring the electrical potential difference (Δψ) between two compartments of the experimental cell generated by some membrane proteins. These proteins are incorporated into closed lipid-protein membrane vesicles associated with an artificial lipid membrane that separates the compartments. The very existence of such proteins able to generate Δψ was one of the consequences of Peter Mitchell's chemiosmotic concept. The discovery and investigation of their functioning contributed to the recognition of this concept and, eventually the well-deserved awarding of the Nobel Prize to P. Mitchell. Lel A. Drachev (1926-2022) was one of the main authors of the direct electrometrical method. With his participation, key studies were carried out on the electrogenesis of photosynthetic and respiratory membrane proteins, including bacteriorhodopsin, visual rhodopsin, photosynthetic bacterial reaction centers, cytochrome oxidase and others.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Bacterias , Complejo IV de Transporte de Electrones , Lípidos
7.
Proc Natl Acad Sci U S A ; 117(42): 26307-26317, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020272

RESUMEN

Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles.


Asunto(s)
Colubridae/genética , Pigmentación de la Piel/genética , Proteínas de Transporte Vesicular/genética , Animales , Evolución Biológica , Cromatóforos/metabolismo , Mapeo Cromosómico , Color , Colubridae/metabolismo , Genoma , Lisosomas/metabolismo , Melaninas/metabolismo , Melanóforos/metabolismo , Melanosomas/metabolismo , Mutación , Piel/metabolismo , Serpientes/genética , Vertebrados/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Microsc Microanal ; 29(6): 2080-2089, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37832148

RESUMEN

Transmission electron microscopy (TEM) has revolutionized our understanding of protein structures by enabling atomic-resolution visualization without the need for crystallography, thanks to advancements in cryo-TEM and single particle analysis methods. However, conventional electron microscopy remains relevant for studying stained samples, as it allows the practical determination of optimal conditions through extensive experimentation. TEM also facilitates the examination of supramolecular complexes encompassing proteins, lipids, and nucleic acids. In this study, we investigated the applicability of lanthanoid reagents as electron-staining alternatives to uranyl acetate, which is globally regulated as a nuclear fuel material. We focus on a model biomembrane vesicle system, the chromatophores from the purple photosynthetic eubacterium Rhodospirillum rubrum, which integrate proteins and lipids. Through density distribution analysis of electron micrographs, we evaluated the efficacy of various lanthanoid acetates and found that triacetates of neodymium, samarium, and gadolinium exhibited similar staining effectiveness to uranyl acetate. Additionally, triacetates of praseodymium, erbium, and lutetium, followed by europium show promising results as secondary candidates. Our findings suggest that lanthanoid transition heavy metal acetates could serve as viable alternatives for electron staining in TEM, offering potential advantages over uranyl acetate.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales Pesados , Indicadores y Reactivos , Electrones , Coloración y Etiquetado , Acetatos , Lípidos
9.
J Fish Biol ; 103(1): 13-21, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060354

RESUMEN

Colouring has a great influence on the commercialization of ornamental fish. The aim of this study was to evaluate different concentrations of canthaxanthin in the diet of the blood swordtail Xiphophorus helleri in an effort to obtain a more intense red colour. Six concentrations of canthaxanthin (0, 50, 100, 250, 400 and 600 mg kg-1 diet) were used. The experiment lasted 60 days. Fish were evaluated for increased red pigmentation through the use of photographs (performed by smartphone) and imaging applications considering the Hunter method and the CMYK and productive performance. No significant differences were observed for productive performance. The use of photographs by means of a smartphone and the use of imaging applications proved to be adequate to assess differences in colour in the species. Swordtail red pigmentation did not show significant increase regardless of canthaxanthin dosages. Varieties of ornamental fish bred for red coloration may have limits for increased colour due to the storage capacity of carotenoids by chromatophores.


Asunto(s)
Cantaxantina , Ciprinodontiformes , Animales , Color , Carotenoides , Dieta/veterinaria
10.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982307

RESUMEN

Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved FTIR difference spectra reflecting light-induced ubiquinone reduction to ubiquinol in bacterial photosynthetic membranes and in detergent-isolated photosynthetic bacterial reaction centers. We found compelling evidence that in both systems under strong light illumination-and also in detergent-isolated reaction centers after two saturating flashes-a ubiquinone-ubiquinol charge-transfer quinhydrone complex, characterized by a characteristic band at ~1565 cm-1, can be formed. Quantum chemistry calculations confirmed that such a band is due to formation of a quinhydrone complex. We propose that the formation of such a complex takes place when Q and QH2 are forced, by spatial constraints, to share a common limited space as, for instance, in detergent micelles, or when an incoming quinone from the pool meets, in the channel for quinone/quinol exchange at the QB site, a quinol coming out. This latter situation can take place both in isolated and membrane bound reaction centers Possible consequences of the formation of this charge-transfer complex under physiological conditions are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Ubiquinona/metabolismo , Hidroquinonas , Detergentes , Espectrofotometría Infrarroja , Quinonas/metabolismo , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón
11.
Fish Physiol Biochem ; 49(6): 1511-1525, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982969

RESUMEN

The pineal hormone melatonin is a multi-functional molecule with a recognized role in pigment aggregation in chromatophores, mediating its actions through binding to subtypes of its specific receptors. Since its discovery, melatonin has been known to be responsible for pigment aggregation towards the cell centre in fishes, including their embryos, as an adaptation to reduced light and thus results in pale body colouration. Diversity exists in the sensitivity of melanophores towards melatonin at interspecies, intraspecific levels, seasons, and amongst chromatophores at different regions of the animal body. In most of the fishes, melatonin leads to their skin paling at night. It is indicated that the melatonin receptors have characteristically maintained to show the same aggregating effects in fishes and other vertebrates in the evolutionary hierarchy. However, besides this aggregatory effect, melatonin is also responsible for pigment dispersion in certain fishes. Here is the demand in our review to explore further the nature of the dispersive behaviour of melatonin through the so-called ß-melatonin receptors. It is clear that the pigment translocations in lower vertebrates under the effect of melatonin are mediated through the melatonin receptors coupled with other hormonal receptors as well. Therefore, being richly supplied with a variety of receptors, chromatophores and melanocytes can be used as in vitro test models for pharmacological applications of known and novel drugs. In this review, we present diverse effects of melatonin on chromatophores of fishes in particular with appropriate implications on most of the recent findings.


Asunto(s)
Cromatóforos , Melatonina , Animales , Melatonina/farmacología , Melatonina/metabolismo , Receptores de Melatonina/metabolismo , Peces/metabolismo , Melanóforos , Vertebrados/metabolismo
12.
Trends Genet ; 35(4): 265-278, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30819536

RESUMEN

Color patterns provide easy access to phenotypic diversity and allow the questioning of the adaptive value of traits or the constraints acting on phenotypic evolution. Reef fish offer a unique opportunity to address such questions because they are ecologically and phylogenetically diverse and have the largest variety of pigment cell types known in vertebrates. In addition to recent development of their genetic resources, reef fish also constitute experimental models that allow the discrimination of ecological, developmental, and evolutionary processes at work. Here, we emphasize how the study of color patterns in reef fish can be integrated in an Eco/Evo/Devo (ecological evolutionary developmental) perspective and we illustrate that such an approach can bring new insights on the evolution of complex phenotypes.


Asunto(s)
Peces/genética , Estudios de Asociación Genética , Apariencia Física , Pigmentación , Carácter Cuantitativo Heredable , Animales , Biodiversidad , Evolución Biológica , Ecología , Peces/clasificación , Variación Genética , Modelos Biológicos , Filogenia
13.
Photosynth Res ; 153(1-2): 103-112, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35277801

RESUMEN

Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).


Asunto(s)
Antiinfecciosos Locales , Cromatóforos , Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodospirillum rubrum , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Compuestos de Benzalconio , Clorhexidina/metabolismo , Cromatóforos/metabolismo , Fluorescencia , Iminas , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Piridinas , Rhodospirillum rubrum/metabolismo
14.
J Exp Biol ; 225(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593398

RESUMEN

Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.


Asunto(s)
Cromatóforos , Adaptación Fisiológica , Animales , Cromatóforos/fisiología , Color , Fenotipo , Pigmentación/fisiología
15.
Biochemistry (Mosc) ; 87(10): 1138-1148, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36273882

RESUMEN

Effect of dipyridamole (DIP) at concentrations up to 1 mM on fluorescent characteristics of light-harvesting complexes LH2 and LH1, as well as on conditions of photosynthetic electron transport chain in the bacterial chromatophores of Rba. sphaeroides was investigated. DIP was found to affect efficiency of energy transfer from the light-harvesting complex LH2 to the LH1-reaction center core complex and to produce the long-wavelength ("red") shift of the absorption band of light-harvesting bacteriochlorophyll molecules in the IR spectral region at 840-900 nm. This shift is associated with the membrane transition to the energized state. It was shown that DIP is able to reduce the photooxidized bacteriochlorophyll of the reaction center, which accelerated electron flow along the electron transport chain, thereby stimulating generation of the transmembrane potential on the chromatophore membrane. The results are important for clarifying possible mechanisms of DIP influence on the activity of membrane-bound functional proteins. In particular, they might be significant for interpreting numerous therapeutic effects of DIP.


Asunto(s)
Cromatóforos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Bacterioclorofilas/metabolismo , Dipiridamol/farmacología , Dipiridamol/metabolismo , Transferencia de Energía , Proteínas de la Membrana/metabolismo , Cromatóforos/metabolismo , Proteínas Bacterianas/metabolismo
16.
Photosynth Res ; 147(2): 197-209, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33389445

RESUMEN

Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 µM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 µM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.


Asunto(s)
Antiinfecciosos Locales/farmacología , Cromatóforos Bacterianos/efectos de los fármacos , Transferencia de Energía/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Rhodobacter sphaeroides/fisiología , Cardiolipinas/química , Membrana Celular/efectos de los fármacos , Cinética , Luz , Complejos de Proteína Captadores de Luz/efectos de los fármacos , Fosfatidilgliceroles/química , Fotosíntesis/efectos de los fármacos , Rhodobacter sphaeroides/química , Espectrometría de Fluorescencia
17.
J Exp Biol ; 223(Pt 24)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376094

RESUMEN

Morphological background adaptation is both an endocrine and a nervous response, involving changes in the amount of chromatophores and pigment concentration. However, whether this adaptation takes place at early developmental stages is largely unknown. Somatolactin (Sl) is a pituitary hormone present in fish, which has been associated to skin pigmentation. Moreover, growth hormone receptor type 1 (Ghr1) has been suggested to be the Sl receptor and was associated with background adaptation in adults. In this context, the aim of this work was to evaluate the ontogeny of morphological adaptation to background and the participation of ghr1 in this process. We found in larval stages of the cichlid Cichlasoma dimerus that the number of head melanophores and pituitary cells immunoreactive to Sl was increased in individuals reared with black backgrounds compared with that in fish grown in white tanks. In larval stages of the medaka Oryzias latipes, a similar response was observed, which was altered by ghr1 biallelic mutations using CRISPR/Cas9. Interestingly, melanophore and leucophore numbers were highly associated. Furthermore, we found that somatic growth was reduced in ghr1 biallelic mutant O. latipes, establishing the dual function of this growth hormone receptor. Taken together, these results show that morphological background adaptation is present at early stages during development and that is dependent upon ghr1 during this period.


Asunto(s)
Proteínas de Peces , Receptores de Somatotropina , Aclimatación , Animales , Color , Proteínas de Peces/genética , Hormona del Crecimiento , Hormonas Hipofisarias/genética , Receptores de Somatotropina/genética
18.
J Neurosci ; 37(4): 768-780, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123014

RESUMEN

Cephalopods in nature undergo highly dynamic skin coloration changes that allow rapid camouflage and intraspecies communication. The optic lobe is thought to play a key role in controlling the expansion of the chromatophores that generate these diverse body patterns. However, the functional organization of the optic lobe and neural control of the various body patterns by the optic lobe are largely unknown. We applied electrical stimulation within the optic lobe to investigate the neural basis of body patterning in the oval squid, Sepioteuthis lessoniana Most areas in the optic lobe mediated predominately ipsilateral expansion of chromatophores present on the mantle, but not on the head and arms; furthermore, the expanded areas after electrical stimulation were positively correlated with an increase in stimulating voltage and stimulation depth. These results suggest a unilaterally dominant and vertically converged organization of the optic lobe. Furthermore, analyzing 14 of the elicited body pattern components and their corresponding stimulation sites revealed that the same components can be elicited by stimulating different parts of the optic lobe and that various subsets of these components can be coactivated by stimulating the same area. These findings suggest that many body pattern components may have multiple motor units in the optic lobe and that these are organized in a mosaic manner. The multiplicity associated with the nature of the neural controls of these components in the cephalopod brain thus reflects the versatility of the individual components during the generation of diverse body patterns. SIGNIFICANCE STATEMENT: Neural control of the dynamic body patterning of cephalopods for camouflage and intraspecies communication is a fascinating research topic. Previous studies have shown that the optic lobe is the motor command center for dynamic body patterning. However, little is known about its neural organization and the mechanisms underlying its control of body pattern generation. By electrically stimulating the optic lobe of the oval squids and observing their body pattern changes, surprisingly, we found that there is no somatotopic organization of motor units. Instead, many of these components have multiple motor units within the optic lobe and are organized in a mosaic manner. The present work reveals a novel neural control of dynamic body patterning for communication in cephalopods.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cromatóforos/fisiología , Decapodiformes/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Animales , Decapodiformes/anatomía & histología , Estimulación Eléctrica/métodos , Femenino , Masculino , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología
19.
Biochim Biophys Acta Bioenerg ; 1859(2): 145-153, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29180241

RESUMEN

One of the less understood parts of the catalytic cycle of cytochrome bc1/b6f complexes is the mechanism of electronic bifurcation occurring within the hydroquinone oxidation site (Qo site). Several models describing this mechanism invoke a phenomenon of formation of an unstable semiquinone. Recent studies with isolated cytochrome bc1 or b6f revealed that a relatively stable semiquinone spin-coupled to the reduced Rieske cluster (SQ-FeS) is generated at the Qo site during the oxidation of ubi- or plastohydroquinone analogs under conditions of continuous turnover. Here, we identified the EPR transition of SQ-FeS formed upon oxidation of ubihydroquinone in native photosynthetic membranes from purple bacterium Rhodobacter capsulatus. We observed a significant amount of SQ-FeS generated when the antimycin-inhibited enzyme experiences conditions of non-equilibrium caused by the continuous light activation of the reaction center. We also noted that SQ-FeS cannot be detected under equilibrium redox titrations in dark. The non-equilibrium redox titrations of SQ-FeS indicate that this center has a higher apparent redox midpoint potential when compared to the redox midpoint potential of the quinone pool. This suggests that SQ-FeS is stabilized, which corroborates a recently proposed mechanism in which the SQ-FeS state is metastable and functions to safely hold electrons at the local energy minimum during the oxidation of ubihydroquinone and limits superoxide formation. Our results open new possibilities to study the formation and properties of this state in cytochromes bc under close to physiological conditions in which non-equilibrium is attained by the light activation of bacterial reaction centers or photosystems.


Asunto(s)
Benzoquinonas/química , Membrana Celular/enzimología , Complejo III de Transporte de Electrones/química , Luz , Rhodobacter capsulatus/enzimología , Benzoquinonas/metabolismo , Dominio Catalítico , Complejo III de Transporte de Electrones/metabolismo , Oxidación-Reducción/efectos de la radiación
20.
Biochim Biophys Acta ; 1848(11 Pt A): 2898-909, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26343161

RESUMEN

Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.


Asunto(s)
Cromatóforos Bacterianos/metabolismo , Carotenoides/metabolismo , Líquidos Iónicos/química , Rhodobacter sphaeroides/metabolismo , Algoritmos , Cromatóforos Bacterianos/efectos de los fármacos , Cloruros/química , Imidazolinas/química , Líquidos Iónicos/farmacología , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxidación-Reducción , Permeabilidad/efectos de los fármacos , Pirrolidinas/química , Rhodobacter sphaeroides/efectos de los fármacos , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda