Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
J Environ Manage ; 358: 120815, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593739

RESUMEN

The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.


Asunto(s)
Carbón Mineral , Pirólisis , Reciclaje , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Aceites/química , Automóviles
2.
Appl Intell (Dordr) ; 52(1): 732-752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34764598

RESUMEN

Intelligent separation is a core technology in the transformation, upgradation, and high-quality development of coal. Realising the intelligent recognition and accurate classification of coal flotation froth is a key technology of intelligent separation. At present, the coal flotation process relies on artificial recognition of froth features for adjusting the reagent dosage. However, owing to the low accuracy and subjectivity of artificial recognition, some problems arise, such as reagent wastage and unqualified product quality. Thus, this paper proposes a new froth image classification method based on the maximal-relevance-minimal-redundancy (MR MR)-semi-supervised Gaussian mixture model (SSGMM) hybrid model for recognition of reagent dosage condition in the coal flotation process. First, the features of morphology, colour, and texture are extracted, and the optimal froth image features are screened out using the maximal-relevance-minimal-redundancy (MRMR) feature selection algorithm based on class information. Second, the traditional GMM clusterer is improved, called SSGMM, by introducing a small number of marked samples, the traditional GMM' problems of unclear training goals, invisible clustering results, and artificially judged clustering results are solved. Then a new hybrid classification model is proposed by combining the MRMR with the modified GMM (SSGMM) which can be named as (MRMR - SSGMM). The optimal froth image features are screened by MRMR to provide the SSGMM classifier. In the process of training and learning the feature samples, using the marked feature samples of froth images to guide the unmarked feature samples. The information of marked feature samples of froth images is mapped to the unmarked feature samples, the classification of the froth images were realised. Finally, the accuracy of the SSGMM classifier is used as the evaluation criterion for the screened features by MRMR. By automatically executing the entire learning process to find the best number of froth image features and the optimal image features, so that the classifier achieves the maximum classification accuracy. Experimental results show that the proposed classification method achieves the best results in accuracy and time, compared with other benchmark classification methods. Application results show that the method can provide reliable guidance for the adjustment of the reagent dosage, realize the accurate and timely control of the reagent dosage, reduce the consumption of the reagent and the incidence of production accidents, and stabilize the product quality in the coal flotation production process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda