RESUMEN
In recent years, studies have shown that the secretome of bone marrow mesenchymal stromal cells (BMSCs) contains many growth factors, cytokines, and antioxidants, which may provide novel approaches to treat ischemic diseases. Furthermore, the secretome may be modulated by hypoxic preconditioning. We hypothesized that conditioned medium (CM) derived from BMSCs plays a crucial role in reducing tissue damage and improving neurological recovery after ischemic stroke and that hypoxic preconditioning of BMSCs robustly improves these activities. Rats were subjected to ischemic stroke by middle cerebral artery occlusion and then intravenously administered hypoxic CM, normoxic CM, or Dulbecco modified Eagle medium (DMEM, control). Cytokine antibody arrays and label-free quantitative proteomics analysis were used to compare the differences between hypoxic CM and normoxic CM. Injection of normoxic CM significantly reduced the infarct area and improved neurological recovery after stroke compared with administering DMEM. These outcomes may be associated with the attenuation of apoptosis and promotion of angiogenesis. Hypoxic preconditioning significantly enhanced these therapeutic effects. Fourteen proteins were significantly increased in hypoxic CM compared with normoxic CM as measured by cytokine arrays. The label-free quantitative proteomics analysis revealed 163 proteins that were differentially expressed between the two groups, including 107 upregulated proteins and 56 downregulated proteins. Collectively, our results demonstrate that hypoxic CM protected brain tissue from ischemic injury and promoted functional recovery after stroke in rats and that hypoxic CM may be the basis of a potential therapy for stroke patients.
Asunto(s)
Células de la Médula Ósea/metabolismo , Encéfalo/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Hipoxia de la Célula , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Recuperación de la FunciónRESUMEN
Inflammatory bowel disease (IBD) as a chronic recurrent disorder is characterized by mucosal immune response dysregulation, which is more prevalent in the youth. Adipose-derived mesenchymal stem cells (ADMSCs) are the multipotent cells that can be effective in immune response regulation via cell-cell interaction and their secretions. In this study, the effects of ADMSCs and mesenchymal stem cell-conditioned medium (MSC-CM) were evaluated on dextran sulfate sodium (DSS)-induced colitis in mice. Chronic colitis was induced in female C57BL/6 mice using 2% DSS in drinking water for three cycles; there were 4 days of DSS-water administration that was followed by 7 days of DSS-free water, in a cycle. ADMSCs, 106 cells per mouse, were injected intraperitoneally (IP), whereas the MSC-CM injection was also performed six times from the last day of DSS in Cycle 1. Clinical symptoms were recorded daily. The colon pathological changes, cytokine levels, and regulatory T (Treg) cell percentages were then analyzed. After receiving ADMSCs and MSC-CM in colitis mice, the clinical symptoms and disease activity index were improved and the survival rate was increased. The histopathological examination also showed tissue healing in comparison with the nontreated group. In addition, the increased level of transforming growth factor beta, increased percentage of Treg cells, increased level of interleukin (IL)-10, and decreased level of IL-17 were observed after the treatment. This study showed the regulatory effects of ADMSCs and MSC-CM on inflammatory responses. Therefore, the use of ADMSCs and MSC-CM can be introduced as a new and effective therapeutic approach for patients with colitis.
Asunto(s)
Colitis/tratamiento farmacológico , Medios de Cultivo Condicionados/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Animales , Colitis/inmunología , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Citocinas/genética , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Enfermedades Inflamatorias del Intestino/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismoRESUMEN
The pigment molecule, melanin, is produced from melanosomes of melanocytes through melanogenesis, which is a complex process involving a combination of chemical and enzymatically catalyzed reactions. The synthesis of melanin is primarily influenced by tyrosinase (TYR), which has attracted interest as a target molecule for the regulation of pigmentation or depigmentation in skin. Thus, direct inhibitors of TYR activity have been sought from various natural and synthetic materials. However, due to issues with these inhibitors, such as weak or permanent ability for depigmentation, allergy, irritant dermatitis and rapid oxidation, in vitro and in vivo, the development of new materials that inhibit melanin production is essential. A conditioned medium (CM) derived from stem cells contains many cell-secreted factors, such as cytokines, chemokines, growth factors and extracellular vesicles including exosomes. In addition, the secreted factors could negatively regulate melanin production through stimulation of a microenvironment of skin tissue in a paracrine manner, which allows the neural stem cell CM to be explored as a new material for skin depigmentation. In this review, we will summarize the current knowledge regulating depigmentation, and discuss the potential of neural stem cells and their derivatives, as a new material for skin depigmentation.
Asunto(s)
Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Melaninas/antagonistas & inhibidores , Células-Madre Neurales/metabolismo , Preparaciones para Aclaramiento de la Piel/metabolismo , Preparaciones para Aclaramiento de la Piel/farmacología , Animales , Técnicas de Cultivo de Célula/métodos , Exosomas/metabolismo , Humanos , Melaninas/metabolismo , Células-Madre Neurales/citología , Pigmentación de la Piel/efectos de los fármacosRESUMEN
Secreted proteins, collectively referred to as the secretome, were suggested as valuable biomarkers in disease diagnosis and prognosis. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsically low abundance; they are frequently masked by the released proteins from lysed cells and the substantial amounts of serum proteins used in culture medium. The hollow fiber culture (HFC) system is a commercially available system composed of small fibers sealed in a cartridge shell; cells grow on the outside of the fiber. Recently, because this system can help cells grow at a high density, it has been developed and applied in a novel analytical platform for cell secretome collection in cancer biomarker discovery. This article focuses on the advantages of the HFC system, including the effectiveness of the system for collection of secretomes, and reviews the process of cell secretome collection by the HFC system and proteomic approaches to discover cancer biomarkers. The HFC system not only provides a high-density three-dimensional (3D) cell culture system to mimic tumor growth conditions in vivo but can also accommodate numerous cells in a small volume, allowing secreted proteins to be accumulated and concentrated. In addition, cell lysis rates can be greatly reduced, decreasing the amount of contamination by abundant cytosolic proteins from lysed cells. Therefore, the HFC system is useful for preparing a wide range of proteins from cell secretomes and provides an effective method for collecting higher amounts of secreted proteins from cancer cells. This article is part of a Special Issue entitled: An Updated Secretome.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Técnicas de Cultivo de Célula/instrumentación , Neoplasias/diagnóstico , Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica/instrumentación , Animales , Biomarcadores de Tumor/análisis , Diseño de Equipo , Humanos , Proteoma/análisis , Vías SecretorasRESUMEN
The function of subcutaneous adipocytes in promoting wound healing is significantly suppressed in diabetic wounds. Recent studies have demonstrated the ability of mesenchymal stem cell (MSC) to ameliorate impaired diabetic wound healing. We hypothesized that MSC function may involve subcutaneous adipocytes. The abnormal function of subcutaneous adipocytes from STZ induced diabetic mice including glucose uptake and free fatty acid (FFA) secretion level were assessed. Then these cells were co-cultured with MSC via a transwell system to observe the changes of metabolic index and glucose transporter four (GLUT4) as well as phosphoinositide 3-kinase/protein kinase (PI3K/AKT) signaling pathway expression. The results of metabolic index suggest that MSC obviously attenuated the diabetes-induced functional impairment. Both mRNA and protein expression analyses showed that PI3K/AKT insulin signaling pathway and GLUT4 expression were up-regulated. These changes were substantially associated with a increased level of insulin-like growth factor-1 (IGF-1) secretion from MSC. These findings suggest that MSC could attenuate abnormal function of diabetic adipocytes by IGF-1secretion, which was more or less associated with the beneficial effects of MSC on improving diabetic wound healing.
Asunto(s)
Adipocitos/patología , Diabetes Mellitus Experimental/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/citología , Adipocitos/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , EstreptozocinaRESUMEN
Background and Objective: Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods: A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings: There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions: Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
RESUMEN
Decellularized extracellular matrix (dECM) hydrogels loaded with adipose-derived stromal cells (ASC) or their conditioned medium (ASC CM) present a promising and versatile treatment approach for tissue vascularization and regeneration. These hydrogels are easy to produce, store, personalize, manipulate, and deliver to the target tissue. This literature review aimed to investigate the applications of dECM hydrogels with ASC or ASC CM for in vivo tissue vascularization. Fourteen experimental studies have been reviewed using vessel density as the primary outcome parameter for in vivo vascularization. The studies consistently reported an increased efficacy in augmenting angiogenesis by the ASC or ASC CM-loaded hydrogels compared to untreated controls. However, this systematic review shows the need to standardize procedures and characterization, particularly of the final administered product(s). The findings from these experimental studies highlight the potential of dECM hydrogel with ASC or ASC CM in novel tissue regeneration and regenerative medicine applications.
Asunto(s)
Tejido Adiposo , Matriz Extracelular Descelularizada , Hidrogeles , Neovascularización Fisiológica , Células del Estroma , Animales , Humanos , Tejido Adiposo/citología , Medios de Cultivo Condicionados , Matriz Extracelular Descelularizada/química , Hidrogeles/química , Medicina Regenerativa/métodos , Células del Estroma/trasplante , Células del Estroma/citología , Ingeniería de Tejidos/métodosRESUMEN
BACKGROUND: Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine. METHODS: Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch. RESULTS: The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats. CONCLUSION: In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.
RESUMEN
The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120-140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.
Asunto(s)
Vesículas Extracelulares , Medios de Cultivo Condicionados/análisis , Vesículas Extracelulares/química , Filtración , UltracentrifugaciónRESUMEN
Introduction: Cell therapy using adipose-derived mesenchymal stem cells (ASCs) is a promising avenue of regenerative medicine for the treatment of various diseases. It has been considered that ASCs exert their therapeutic effects through the secretion of multiple factors that are critical for tissue remodeling or the suppression of inflammation. Recently, conditioned medium (CM) from ASCs that contains a complex of secreted factors has received attention as a cost-effective alternative to cell therapy. Methods: We investigated the effects of CM obtained from ASCs (ASCs-CM) using human dermal fibroblasts (hDFs) and human epidermal keratinocytes with or without interleukin (IL)-1ß and examined mRNA levels of marker genes. We also examined alterations in cell proliferation and morphology of hDFs following treatment with ASCs-CM. We further investigated the effects of ASCs-CM treatment on prevention of skin inflammation using a mouse model. Results: In hDFs and human epidermal keratinocytes, the ASCs-CM treatment suppressed pro-inflammatory factors and enhanced regenerative and remodeling factors with or without interleukin (IL)-1ß exposure. The ASCs-CM treatment also enhanced cell proliferation of hDFs and prevented morphological changes in response to IL-1ß exposure. Furthermore, in a mouse model of skin inflammation, treatment with ASCs-CM reduced the inflammatory reactions, including redness and thickness. Conclusions: CM from ASCs may represent a potential alternative to ASC therapy for the treatment of inflammatory skin conditions.
RESUMEN
DLC1 (deleted in liver cancer-1) is downregulated or deleted in colorectal cancer (CRC) tissues and functions as a potent tumor suppressor, but the underlying molecular mechanism remains elusive. We found that the conditioned medium (CM) collected from DLC1-overexpressed SW1116 cells inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but had no effect on proliferation, which suggested DLC1-mediated secretory components containing a specific inhibitor for colon adenocarcinoma cell migration. Analysis by mass spectrometry identified mesencephalic astrocyte-derived neurotrophic factor (MANF) as a candidate. More importantly, exogenous MANF significantly inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but did not affect proliferation. Mechanistically, DLC1 reduced the retention of MANF in ER by competing the interaction between MANF and GRP78. Taken together, these data provided new insights into the suppressive effects of DLC1 on CRC, and revealed the potential of MANF in the treatment of CRC.
RESUMEN
The superior laryngeal nerve (SLN) is known to play an essential role in the laryngeal reflex and swallowing. Damage to the SLN causes difficulty swallowing, that is, dysphagia. We successfully developed a novel rat model of dysphagia by SLN injury, in which we could evaluate the neuroregenerative capacity of stem cell from human exfoliated deciduous teeth (SHED). The dysphagic rats exhibit weight loss and altered drinking patterns. Furthermore, SLN injury induces a delayed onset of the swallowing reflex and accumulation of laryngeal debris in the pharynx. This rat model was used to evaluate the systemic application of SHED-conditioned medium (SHED-CM) as a therapeutic candidate for dysphagia. We found that SHED-CM promoted functional recovery and significant axonal regeneration in SLNs through the polarization shift of macrophages from activated inflammatory macrophages (M1) to anti-inflammatory macrophages (M2) and angiogenesis. This chapter describes the establishment of SLN-injury induced dysphagia rat model and the preparation and application of SHED-CM.
Asunto(s)
Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Regeneración Nerviosa , Nervios Periféricos/fisiología , Medicina Regenerativa , Animales , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados/farmacología , Trastornos de Deglución/diagnóstico , Modelos Animales de Enfermedad , Atragantamiento , Humanos , Masculino , Fenotipo , Ratas , Células Madre/metabolismo , Evaluación de Síntomas , Diente Primario/citología , Diente Primario/metabolismoRESUMEN
Therapeutic transplantation of autologous bone marrow mesenchymal stem cells (BMSCs) holds great promise for ischemic stroke, yet the efficacy is negatively impacted by aging. Here, we examined whether hypoxia conditioning could enhance aged human BMSCs-induced neuroprotection via secretome action. Primary cultured mouse neurons were exposed to oxygen glucose deprivation (OGD) to mimic ischemic stroke in vitro, then randomized into a hypoxia conditioned aged human BMSCs-conditioned medium (BMSC-hypoCM) versus normoxia conditioned (BMSC-norCM). After 22â¯h of reperfusion, cell viability was significantly increased in neurons treated with BMSC-hypoCM rather than BMSC-norCM. ELISA revealed that hypoxia conditioning enhanced vascular endothelial growth factor (VEGF) release into BMSC-derived CM. Blocking the VEGF receptor negated BMSC-hypoCM-induced protection for neurons against OGD insult. Altogether, our data indicates that hypoxia conditioning improves aged human BMSCs' therapeutic efficacy for neurons with ischemic challenge, in part via promoting secretion of VEGF.
Asunto(s)
Isquemia Encefálica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuronas/metabolismo , Anciano , Animales , Hipoxia de la Célula , Supervivencia Celular , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/citología , Cultivo Primario de Células , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The cancer stem cell (CSC) hypothesis suggests that tumors are sustained exclusively by a small population of the cells with stem cell properties. CSCs have been identified in most tumors and are responsible for the initiation, recurrence, and resistance of different cancers. In vitro CSC models will be of great help in revisiting the mechanism of cancer development, as well as the tumor microenvironment and the heterogeneity of cancer and metastasis. Our group recently described the generation of CSCs from induced pluripotent stem cells (iPSCs), which were reprogrammed from normal cells, and/or embryonic stem cells (ESCs). This procedure will improve the understanding of the essential niche involved in cancer initiation. The composition of this cancer-inducing niche, if identified, will let us know how normal cells convert to malignant in the body and how, in turn, cancer prevention could be achieved. Further, once developed, CSCs demonstrate the ability to differentiate into endothelial cells, cancer-associated fibroblasts, and other phenotypes establishing the CSC niche. These will be good materials for developing novel cancer treatments. In this protocol, we describe how to handle mouse iPSCs/ESCs and how to choose the critical time for starting the conversion into CSCs. This CSC generation protocol is essential for understanding the role of CSC in cancer initiation and progress.
RESUMEN
Aim: To examine whether AKT-modified stromal cells expand human CD34+ hematopoietic stem cells (HSCs). Methods: Coculture, in vitro functional assays, immuno-fluorescence microscopy, flow cytometry. Results: M2-10B4 stromal cells (M2) modified with AKT1 (M2-AKT) expanded primitive CD34+38- HSCs, but affected their functionality. A chimeric feeder layer comprising naive human bone marrow-derived mesenchymal stromal cells and M2-AKT not only overcame the negative effects of M2-AKT, but, unexpectedly, also gave a synergistic effect on the growth and functionality of the HSCs. Conditioned medium of bone marrow stromal cells worked as effectively, but cell-cell contact between HSCs and M2-AKT cells was necessary for the synergistic effect of M2-AKT and bone marrow-derived mesenchymal stromal cells or their CM. Conclusion: Chimeric feeders expand HSCs.
Asunto(s)
Proliferación Celular , Células Nutrientes/metabolismo , Células Madre Hematopoyéticas/enzimología , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Animales , Técnicas de Cocultivo , Células Nutrientes/citología , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Células del Estroma/citología , Células del Estroma/metabolismoRESUMEN
INTRODUCTION: Epithelial-mesenchymal transition (EMT) induces the loss of cell-cell interactions in polarized epithelial cells and converts these cells to invasive mesenchymal-like cells. It is also involved in tissue fibrosis including that occurring in some ocular surface diseases such as pterygium and in subepithelial corneal fibrosis in limbal stem cell deficiency. Here, we examined the effects of the secretome of human adipose-derived mesenchymal stem cells (AdMSCs) on EMT in human corneal epithelial cells (CECs). METHODS: EMT was induced with transforming growth factor-ß (TGF-ß) in primary human CECs isolated from the human corneal limbus. The effects of the AdMSC secretome on EMT in these cells or stratified CEC sheets were analyzed by co-cultivation experiments with the addition of AdMSC conditioned-medium. The expression of EMT-related genes and proteins in CECs was analyzed. The superstructure of CECs was observed by scanning electron microscopy. Furthermore, the barrier function of CEC sheets was analyzed by measuring transepithelial electrical resistance (TER). RESULTS: The AdMSC secretome was found to suppress EMT-related gene expression and attenuate TGF-ß-induced corneal epithelial dysfunction including the dissociation of cell-cell interactions and decreases in TER in constructed CEC sheets. CONCLUSIONS: The secretome of AdMSCs can inhibit TGF-ß-induced EMT in CECs. These findings suggest that this could be a useful source for the treatment for EMT-related ocular surface diseases.
RESUMEN
OBJECTIVES: Aim of this study was to investigate the effects of dental pulp stem cells' (DPSCs) secretome, expressed through their culture conditioned medium (CM), on biological endpoints related to pulp repair and on TEGDMA-induced cytotoxicity. METHODS: DPSCs cultures were established and characterized for stem cell markers with flow cytometry. CM was collected from DPSCs under serum deprivation conditions (SDC) and normal serum conditions (NSC) at various time-points. CM effects on DPSCs viability, migration and mineralization potential were evaluated by MTT assay, transwell insert and in vitro scratch assay and Alizarin Red staining/quantification respectively. TEGDMA (0.25-2.0mM) cytotoxicity regarding the same biological endpoints was tested in the presence/absence of CM. TGF-ß1 and FGF-2 secretion in CM was measured by ELISA. RESULTS: CM collected under SDC (4d) was able to increase cell viability by 20-25% and to reduce TEGDMA cytotoxicity by 20% (p<0.05). CM positive effects were not obvious when collected under NSC. Transwell assay showed significant increase (26%, p<0.05) of DPSCs' migration after CM exposure, whereas both migration assays could not support a migration rate improvement in TEGDMA-treated cultures exposed to CM compared to TEGDMA alone. CM significantly (p<0.01) increased DPSCs mineralization potential and completely counteracted TEGDMA cytotoxicity on this process. ELISA analysis showed a time-dependent increase of TGF-ß1 and a TEGDMA concentration-dependent increase of both TGF-ß1 and FGF-2 in CM. SIGNIFICANCE: These findings suggest that DPSCs secretome increases their viability, migration and mineralization potential and counteracts TEGDMA-induced cytotoxicy, revealing a novel mechanism of DPSCs autocrine signaling on pulp repair processes.