Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(29): e2309216, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334248

RESUMEN

An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.

2.
Nano Lett ; 22(15): 6215-6222, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852915

RESUMEN

In a two-dimensional moiré superlattice, the atomic reconstruction of constituent layers could introduce significant modifications to the lattice symmetry and electronic structure at small twist angles. Here, we employ conductive atomic force microscopy to investigate a twisted trilayer graphene double-moiré superlattice. Two sets of moiré superlattices are observed. At neighboring domains of the large moiré, the current exhibits either 2- or 6-fold rotational symmetry, indicating delicate symmetry breaking beyond the rigid model. Moreover, an anomalous current appears at the "A-A" stacking site of the larger moiré, contradictory to previous observations on twisted bilayer graphene. Both behaviors can be understood by atomic reconstruction, and we also show that the measured current is dominated by the tip-graphene contact resistance that maps the local work function qualitatively. Our results reveal new insights of atomic reconstruction in novel moiré superlattices and opportunities for manipulating exotic quantum states on the basis of twisted van der Waals heterostructures.

3.
Small ; 15(48): e1902099, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31265215

RESUMEN

Scanning probe microscopy techniques providing information on conductivity, chemical fluxes, and interfacial reactivity synchronized with topographical information have gained importance within the last decades. Herein, a novel colloidal atomic force microscopy (AFM) probe is presented using a spherical boron-doped diamond (BDD) electrode attached and electrically connected to a modified silicon nitride cantilever. These conductive spherical BDD-AFM probes allow for electrochemical force spectroscopy. The physical robustness of these bifunctional probes, and the excellent electrochemical properties of BDD renders this concept a unique multifunctional tool for a wide variety of scanning probe studies including conductive AFM, hybrid atomic force-scanning electrochemical microscopy, and tip-integrated chem/bio sensing.

4.
Small ; 14(39): e1802023, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30118585

RESUMEN

Materials with reconfigurable optical properties are candidates for applications such as optical cloaking and wearable sensors. One approach to fabricate these materials is to use external fields to form and dissolve nanoscale conductive channels in well-defined locations within a polymer. In this study, conductive atomic force microscopy is used to electrochemically form and dissolve nanoscale conductive filaments at spatially distinct points in a polyethylene glycol diacrylate (PEGDA)-based electrolyte blended with varying amounts of ionic liquid (IL) and silver salt. The fastest filament formation and dissolution times are detected in a PEGDA/IL composite that has the largest modulus (several GPa) and the highest polymer crystal fraction. This is unexpected because filament formation and dissolution events are controlled by ion transport, which is typically faster within amorphous regions where polymer mobility is high. Filament kinetics in primarily amorphous and crystalline regions are measured, and two different mechanisms are observed. The formation time distributions show a power-law dependence in the crystalline regions, attributable to hopping-based ion transport, while amorphous regions show a normal distribution. The results indicate that the timescale of filament formation/dissolution is determined by local structure, and suggest that structure could be used to tune the optical properties of the film.

5.
Nano Lett ; 17(10): 6280-6286, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28880563

RESUMEN

The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.

6.
Nano Lett ; 16(6): 3434-41, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27116651

RESUMEN

Perovskite solar cells (PSCs) based on thin films of organolead trihalide perovskites (OTPs) hold unprecedented promise for low-cost, high-efficiency photovoltaics (PVs) of the future. While PV performance parameters of PSCs, such as short circuit current, open circuit voltage, and maximum power, are always measured at the macroscopic scale, it is necessary to probe such photoresponses at the nanoscale to gain key insights into the fundamental PV mechanisms and their localized dependence on the OTP thin-film microstructure. Here we use photoconductive atomic force microscopy spectroscopy to map for the first time variations of PV performance at the nanoscale for planar PSCs based on hole-transport-layer free methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) thin films. These results reveal substantial variations in the photoresponse that correlate with thin-film microstructural features such as intragrain planar defects, grains, grain boundaries, and notably also grain-aggregates. The insights gained into such microstructure-localized PV mechanisms are essential for guiding microstructural tailoring of OTP films for improved PV performance in future PSCs.

7.
Small ; 11(38): 5054-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26222541

RESUMEN

Using a conductive atomic force microscope (c-AFM) redox-writing technique, it is shown that it is possible to locally, and reversibly, pattern conducting, and nonconducting features on the surface of a low molecular weight aniline-based organic (semi)-conductor thin film using a commercial c-AFM. It is shown that application of a voltage between the tip and sample causes localized redox reactions at the surface without damage.

8.
Antonie Van Leeuwenhoek ; 108(5): 1213-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319534

RESUMEN

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.


Asunto(s)
Microcystis , Nanocables , Synechocystis , Biología Computacional/métodos , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/ultraestructura , Microcystis/fisiología , Microcystis/ultraestructura , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación Proteica , Synechocystis/fisiología , Synechocystis/ultraestructura
9.
Nano Lett ; 14(12): 6936-41, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25383798

RESUMEN

Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).


Asunto(s)
Grafito/química , Membranas Artificiales , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Selenio/química , Compuestos de Tungsteno/química , Conductividad Eléctrica , Ensayo de Materiales
10.
ACS Nano ; 18(3): 1948-1957, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207107

RESUMEN

Ionic movement has received renewed attention in recent years, particularly in the field of ferroelectric oxides, since it is intrinsically linked to chemical reaction kinetics and ferroelectric phase stability. The associated surface electrochemical processes coupled local ionic transport with an applied electric bias, exhibiting very high ionic mobility at room temperature based on a simple electrostatics scenario. However, few studies have focused on the applied-polarity dependence of ionic migration with directly visualized maps. Here, we use incorporated experiments of conductive scanning probe microscopy and time-of-flight secondary ion mass spectrometry to investigate oxygen ionic migration and cation redistribution in ionic oxides. The local concentrations of oxygen vacancies and other cation species are visualized by three-dimensional mappings, indicating that oxygen vacancies tend to be ejected toward the surface. An accumulation of oxygen vacancies and ionic redistribution strongly depend on tip polarity, thus corroborating their role in the electrochemical process. This work illustrates the interplay between ionic kinetics and electric switching.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38594622

RESUMEN

With the advent of the modern era, there is a huge demand for memristor-based neuromorphic computing hardware to overcome the von Neumann bottleneck in traditional computers. Here, we have prepared two-dimensional titanium carbide (Ti3C2Tx) MXene following the conventional HF etching technique in solution. After confirmation of Ti3C2Tx properties by Raman scattering and crystallinity measurements, high-quality thin-film deposition is realized using an immiscible liquid-liquid interfacial growth technique. Following this, the memristor is fabricated by sandwiching a Ti3C2Tx layer with a thickness of 70 nm between two electrodes. Subsequently, current-voltage (I-V) characteristics are measured, revealing a nonvolatile resistive switching property characterized by a swift switching speed of 30 ns and an impressive current On/Off ratio of approximately 103. Furthermore, it exhibits endurance through 500 cycles and retains the states for at least 1 × 104 s without observable degradation. Additionally, it maintains a current On/Off ratio of about 102 while consuming only femtojoules (fJ) of electrical energy per reading. Systematic I-V results and conductive AFM-based current mapping image analysis are converged to support the electroforming mediated filamentary conduction mechanism. Furthermore, our Ti3C2Tx memristor was found to be truly versatile as an all-in-one device for demonstrating edge computation, logic gate operation, and classical conditioning of learning by the brain in Psychology.

12.
Biosens Bioelectron ; 240: 115664, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689016

RESUMEN

Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/µM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.


Asunto(s)
Técnicas Biosensibles , Citocromos c , Humanos , Animales , Ratas , Superóxidos , Plaquetas , Oro , Músculo Esquelético
13.
ACS Nano ; 16(4): 6309-6316, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324162

RESUMEN

Atomically thin two-dimensional (2D) semiconductors are promising for next-generation memory to meet the scaling down of semiconductor industry. However, the controllability of carrier trapping status, which is the key figure of merit for memory devices, still halts the application of 2D semiconductor-based memory. Here, we introduce a scheme for 2D material based memory using wrinkles in monolayer 2D semiconductors as controllable carrier trapping centers. Memory devices based on wrinkled monolayer MoS2 show multilevel storage capability, an on/off ratio of 106, and a retention time of >104 s, as well as tunable linear and exponential behaviors at the stimulation of different gate voltages. We also reveal an interesting wrinkle-based carrier trapping mechanism by using conductive atomic force microscopy. This work offers a configuration to control carriers in ultrathin memory devices and for in-memory calculations.

14.
Nanomaterials (Basel) ; 11(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835866

RESUMEN

Polyamide 66 (PA66) is a well-known engineering thermoplastic polymer, primarily employed in polymer composites with fillers and additives of different nature and dimensionality (1D, 2D and 3D) used as alternatives to metals in various technological applications. In this work, carbon black (CB), a conductive nanofiller, was used to reinforce the PA66 polymer in the 9-27 wt. % CB loading range. The reason for choosing CB was intrinsically associated with its nature: a nanostructured carbon filler, whose agglomeration characteristics affect the electrical properties of the polymer composites. Crystallinity, phase composition, thermal behaviour, morphology, microstructure, and electrical conductivity, which are all properties engendered by nanofiller dispersion in the polymer, were investigated using thermal analyses (thermogravimetry and differential scanning calorimetry), microscopies (scanning electron and atomic force microscopies), and electrical conductivity measurements. Interestingly, direct current (DC) electrical measurements and conductive-AFM mapping through the samples enable visualization of the percolation paths and the ability of CB nanoparticles to form aggregates that work as conductive electrical pathways beyond the electrical percolation threshold. This finding provides the opportunities to investigate the degree of filler dispersion occurring during the transformation processes, while the results of the electrical properties also contribute to enabling the use of such conductive composites in sensor and device applications. In this regard, the results presented in this paper provide evidence that conductive carbon-filled polymer composites can work as touch sensors when they are connected with conventional low-power electronics and controlled by inexpensive and commercially available microcontrollers.

15.
Adv Biosyst ; 4(7): e2000006, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449305

RESUMEN

Cable bacteria are an emerging class of electroactive organisms that sustain unprecedented long-range electron transport across centimeter-scale distances. The local pathways of the electrical currents in these filamentous microorganisms remain unresolved. Here, the electrical circuitry in a single cable bacterium is visualized with nanoscopic resolution using conductive atomic force microscopy. Combined with perturbation experiments, it is demonstrated that electrical currents are conveyed through a parallel network of conductive fibers embedded in the cell envelope, which are electrically interconnected between adjacent cells. This structural organization provides a fail-safe electrical network for long-distance electron transport in these filamentous microorganisms. The observed electrical circuit architecture is unique in biology and can inspire future technological applications in bioelectronics.


Asunto(s)
Bacterias/química , Conductividad Eléctrica
16.
ACS Nano ; 14(4): 4550-4558, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167748

RESUMEN

Van der Waals layered materials, such as transition metal dichalcogenides (TMDs), are an exciting class of materials with weak interlayer bonding, which enables one to create so-called van der Waals heterostructures (vdWH). One promising attribute of vdWH is the ability to rotate the layers at arbitrary azimuthal angles relative to one another. Recent work has shown that control of the twist angle between layers can have a dramatic effect on TMD vdWH properties, but the twist angle has been treated solely through the use of rigid-lattice moiré patterns. No atomic reconstruction, that is, any rearrangement of atoms within the individual layers, has been reported experimentally to date. Here, we demonstrate that vdWH of MoSe2/WSe2 and MoS2/WS2 at twist angles ≤1° undergo significant atomic level reconstruction leading to discrete commensurate domains divided by narrow domain walls, rather than a smoothly varying rigid-lattice moiré pattern as has been assumed in prior experimental work. Using conductive atomic force microscopy (CAFM), we show that TMD vdWH at small twist angles exhibit large domains of constant conductivity. The domains in samples with R-type stacking are triangular, whereas the domains in samples with H-type stacking are hexagonal. Transmission electron microscopy provides additional evidence of atomic reconstruction in MoSe2/WSe2 structures and demonstrates the transition between a rigid-lattice moiré pattern for large angles and atomic reconstruction for small angles. We use density functional theory to calculate the band structures of the commensurate reconstructed domains and find that the modulation of the relative electronic band edges is consistent with the CAFM results and photoluminescence spectra. The presence of atomic reconstruction in TMD heterostructures and the observed impact on nanometer-scale electronic properties provide fundamental insight into the behavior of this important class of heterostructures.

17.
Ultramicroscopy ; 218: 113081, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739754

RESUMEN

Local electrical properties of thin films of the polymer PTB7 are studied by conductive atomic force microscopy (C-AFM). Non-uniform nanoscale current distribution in the neat PTB7 film is revealed and connected with the existence of ordered PTB7 crystallites. The shape of local I-V curves is explained by the presence of space charge limited current. We modify an existing semi-empirical model for estimation of the nanoscale hole mobility from our experimental C-AFM measurements. The procedure of nanoscale charge mobility estimation was described and applied to the PTB7 films. The calculated average C-AFM hole mobility is in good agreement with macroscopic values reported for this material. Mapping of nanoscale hole mobility was achieved using the described procedure. Local mobility values, influenced by nanoscale structure, vary more than two times in value and have a root-mean-square value 0.22 × 10-8 m2/(Vs), which is almost 20% from average hole mobility.

18.
ACS Appl Mater Interfaces ; 12(8): 9580-9588, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31999089

RESUMEN

We report the synthesis of high-quality single monolayer MoS2 samples using a novel technique that utilizes direct liquid injection (DLI) for the delivery of precursors. The DLI system vaporizes a liquid consisting of a selected precursor dissolved in a solvent into small, micron-sized droplets in an expansion chamber maintained at a selected temperature and pressure, before delivery to the deposition chamber. We demonstrate the synthesis of monolayer MoS2 on SiO2/Si substrates using the DLI technique with film quality superior to exfoliated samples or those grown by traditional tube furnace chemical vapor deposition (CVD) methods. Photoluminescence measurements of DLI monolayers exhibit consistently brighter emission, narrower line width, and higher emission energy than their exfoliated and CVD counterparts. Conductive atomic force microscopy identifies a defect density of 8.3 × 1011/cm2 in DLI MoS2, lower than the measured density in CVD material and nearly an order of magnitude improvement over the exfoliated MoS2 investigated under the same conditions. The DLI method is directly applicable to many other van der Waals materials, which require the use of challenging low vapor pressure precursors, to the growth of alloys, and sequential growths of dissimilar materials leading to van der Waals heterostructures.

19.
ACS Nano ; 13(9): 10448-10455, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31441643

RESUMEN

Transition metal dichalcogenides (TMDs) exhibit promising catalytic properties for hydrogen generation, and several approaches including defect engineering have been shown to increase the active catalytic sites. Despite preliminary understandings in defect engineering, insights on the role of various types of defects in TMDs for hydrogen evolution catalysis are limited. Screw dislocation-driven (SDD) growth is a line defect and yields fascinating spiral and pyramidal morphologies for TMDs with a large number of edge sites, resulting in very interesting electronic and catalytic properties. The role of dislocation lines and edge sites of these spiral structures on their hydrogen evolution catalytic properties is unexplored. Here we show that the large number of active edge sites connected together by dislocation lines in the vertical direction for a spiral WS2 domain results in exceptional catalytic properties toward hydrogen evolution reaction. A micro-electrochemical cell fabricated by photo- and electron beam-lithography processes is used to study the electrocatalytic activity of a single spiral WS2 domain, controllably grown by chemical vapor deposition. Conductive atomic force microscopy studies show improved vertical conduction for the spiral domain, which is compared with monolayer and mechanically exfoliated thick WS2 flakes. The obtained results are interesting and shed light on the role of SDD line defects, which contribute to large number of edge sites without compromising the vertical electrical conduction, on the electrocatalytic properties of TMDs for hydrogen evolution.

20.
Beilstein J Nanotechnol ; 9: 1802-1808, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977713

RESUMEN

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda