Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurogenetics ; 25(2): 131-139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460076

RESUMEN

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.


Asunto(s)
Contactinas , Epilepsia Generalizada , Epistasis Genética , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Estudios de Casos y Controles , Contactinas/genética , Epilepsia Generalizada/genética , Secuenciación del Exoma , Frecuencia de los Genes
2.
Pharm Dev Technol ; 22(3): 426-435, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27575893

RESUMEN

Multiple sclerosis (MS) is a chronic central nervous system (CNS) inflammation. Efficient drug delivery to brain is however hampered by blood-brain barrier (BBB). In order to have highly efficient and safe delivery of drugs to brain, solid lipid nanoparticles (SLNs) have indicated promising potentials as smart carriers that can pass the blood-brain barrier and deliver therapeutic biomolecules to the brain. In this study, PEGylated SLNs surface modified using anti-Contactin-2 or anti-Neurofascin, two axo-glial-glycoprotein antigens located in node of Ranvier, were prepared. These targeting moieties are considered as the main targets of autoimmune reaction in MS. The targeted SLNs were then characterized and their in vitro release profile together with their cell viability and uptake were studied. Their brain uptakes were also probed following injections in MS-induced mice. It was found that the targeted PEGylated SLNs had no significant cytotoxicity on U87MG cells although their cellular uptake was increased 4- and 8-fold when surface modified with anti-Contactin-2 or anti-Neurofascin, respectively, compared to control. Brain uptake results demonstrated higher uptake of surface-modified SLNs in the brain tissue compared with the PEGylated SLNs. The results of this report will help scientist to design more efficient nanocarriers for treatment of MS.


Asunto(s)
Antiinflamatorios/administración & dosificación , Encéfalo/metabolismo , Moléculas de Adhesión Celular/antagonistas & inhibidores , Contactina 2/antagonistas & inhibidores , Portadores de Fármacos/química , Metilprednisolona/administración & dosificación , Nanopartículas/química , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales/química , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Endocitosis/efectos de los fármacos , Humanos , Metilprednisolona/farmacocinética , Metilprednisolona/uso terapéutico , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Rastreo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Propiedades de Superficie
3.
Neuroscience ; 545: 141-147, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513760

RESUMEN

Neonatal encephalopathy (NE) impairs white matter development and results in long-term neurodevelopmental deficits. Leveraging prior findings of altered neuronal proteins carried by brain-derived extracellular vesicles (EVs) that are marked by a neural-specific cell surface glycoprotein Contactin-2 (CNTN2) in NE infants, the present study aimed to determine the correlation between brain and circulating CNTN2+-EVs and whether NE alters circulating CNTN2+-EV levels in mice. Brain tissue and plasma were collected from postnatal day (P)7, 10, 11, 15 mice to determine the baseline CNTN2 correlation between these two compartments (n = 4-7/time point/sex). NE was induced in P10 pups. Brain and plasma samples were collected at 1, 3, 6, 24, and 120 h (n = 4-8/time point/sex). CNTN2 from brain tissue and plasma EVs were quantified using ELISA. ANOVA and linear regression analyses were used to evaluate changes and correlations between brain and plasma CNTN2+-EVs. In baseline experiments, CNTN2 in brain tissue and plasma EVs peaked at P10 with no sex-difference. Brain and plasma CNTN2+-EV showed a positive correlation across early postnatal ages. NE pups showed an elevated CNTN2 in brain tissue and EVs at 1 h and only in brain tissue at 24 h. NE also abolished the positive plasma-brain correlation. The findings establish a link for central CNTN2 and its release into circulation during early postnatal life. The immediate elevation and release of CNTN2 following NE highlight a potential molecular response shortly after a brain injurious event. Our findings further support the utility of circulating brain-derived EVs as a possible bioindicator of NE.


Asunto(s)
Animales Recién Nacidos , Encéfalo , Contactina 2 , Vesículas Extracelulares , Hipoxia-Isquemia Encefálica , Animales , Vesículas Extracelulares/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Encéfalo/metabolismo , Femenino , Masculino , Ratones , Contactina 2/metabolismo , Ratones Endogámicos C57BL
4.
Mult Scler Relat Disord ; 67: 104095, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963206

RESUMEN

BACKGROUND: Although contactin-1 and contactin-2 are known as two proteins involved in axonal regeneration, it is unclear whether these proteins are induced by exercise in persons with multiple sclerosis (PwMS). OBJECTIVE: The aim of this study was to determine the serum levels of contactin-1 and contactin-2 in PwMS and to investigate the change of these markers with exercise. METHODS: A total of 60 participants with relapsing-remitting MS were divided into groups by stratified randomization. The progressive functional exercise was applied to the intervention group. Participants in the control group continued the treatments and lives of the routines. Participants' contactin-1 and contactin-2, cognitive performance and aerobic capacities were evaluated. RESULTS: The comparison of the pre-and post-study values of contactin-1 and contactin-2 showed significant differences only in the intervention group. The contactin-1 and contactin-2 values were similar between the groups before the exercise, whereas a significant difference was found in favor of the intervention group after the exercise. Paced Auditory Serial Addition Test-3 value increased significantly only in the intervention group. CONCLUSION: With this study, it was shown for the first time that contactin-1 and contactin-2, which play an important role in axonal regeneration and axonal organization, can be increased by exercise.


Asunto(s)
Personas con Discapacidad , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/terapia , Contactina 2 , Contactina 1 , Ejercicio Físico
5.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685361

RESUMEN

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

6.
Brain Struct Funct ; 225(7): 2045-2056, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32601750

RESUMEN

The anatomic gene expression atlas (AGEA) of the adult mouse brain of the Allen Institute for Brain Science is a transcriptome-based atlas of the adult C57Bl/6 J mouse brain, based on the extensive in situ hybridization dataset of the Institute. This spatial mapping of the gene expression levels of mice under baseline conditions could assist in the formation of new, reasonable transcriptome-derived hypotheses on brain structure and underlying biochemistry, which could also have functional implications. The aim of this work is to use the data of the AGEA (in combination with Tabula Muris, a compendium of single cell transcriptome data collected from mice, enabling direct and controlled comparison of gene expression among cell types) to provide further insights into the physiology of TAG-1/Contactin-2 and its interactions, by presenting the expression of the corresponding gene across the adult mouse brain under baseline conditions and to investigate any spatial genomic correlations between TAG-1/Contactin-2 and its interacting proteins and markers of mature and immature oligodendrocytes, based on the pre-existing experimental or bibliographical evidence. The across-brain correlation analysis on the gene expression intensities showed a positive spatial correlation of TAG-1/Contactin-2 with the gene expression of Plp1, Myrf, Mbp, Mog, Cldn11, Bace1, Kcna1, Kcna2, App and Nfasc and a negative spatial correlation with the gene expression of Cspg4, Pdgfra, L1cam, Ncam1, Ncam2 and Ptprz1. Spatially correlated genes are mainly expressed by mature oligodendrocytes (like Cntn2), while spatially anticorrelated genes are mainly expressed by oligodendrocyte precursor cells. According to the data presented in this work, we propose that even though Contactin-2 expression during development correlates with high plasticity events, such as neuritogenesis, in adulthood it correlates with pathways characterized by low plasticity.


Asunto(s)
Encéfalo/metabolismo , Contactina 2/metabolismo , Animales , Mapeo Encefálico , Contactina 2/genética , Expresión Génica , Ratones , Transcriptoma
7.
Alzheimers Res Ther ; 10(1): 52, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859129

RESUMEN

BACKGROUND: Synaptic and axonal loss are two major mechanisms underlying Alzheimer's disease (AD) pathogenesis, and biomarkers reflecting changes in these cellular processes are needed for early diagnosis and monitoring the progression of AD. Contactin-2 is a synaptic and axonal membrane protein that interacts with proteins involved in the pathology of AD such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1). We hypothesized that AD might be characterized by changes in contactin-2 levels in the cerebrospinal fluid (CSF) and brain tissue. Therefore, we aimed to investigate the levels of contactin-2 in the CSF and evaluate its relationship with disease pathology. METHODS: Contactin-2 was measured in CSF from two cohorts (selected from the Amsterdam Dementia Cohort), comprising samples from controls (cohort 1, n = 28; cohort 2, n = 20) and AD (cohort 1, n = 36; cohort 2, n = 70) using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). The relationship of contactin-2 with cognitive decline (Mini-Mental State Examination (MMSE)) and other CSF biomarkers reflecting AD pathology were analyzed. We further characterized the expression of contactin-2 in postmortem AD human brain (n = 14) versus nondemented controls (n = 9). RESULTS: CSF contactin-2 was approximately 1.3-fold reduced in AD patients compared with controls (p < 0.0001). Overall, contactin-2 levels correlated with MMSE scores (r = 0.35, p = 0.004). We observed that CSF contactin-2 correlated with the levels of phosphorylated tau within the control (r = 0.46, p < 0.05) and AD groups (r = 0.31, p < 0.05). Contactin-2 also correlated strongly with another synaptic biomarker, neurogranin (control: r = 0.62, p < 0.05; AD: r = 0.60, p < 0.01), and BACE1, a contactin-2 processing enzyme (control: r = 0.64, p < 0.01; AD: r = 0.46, p < 0.05). Results were further validated in a second cohort (p < 0.01). Immunohistochemical analysis revealed that contactin-2 is expressed in the extracellular matrix. Lower levels of contactin-2 were specifically found in and around amyloid plaques in AD hippocampus and temporal cortex. CONCLUSIONS: Taken together, these data reveal that the contactin-2 changes observed in tissues are reflected in CSF, suggesting that decreased contactin-2 CSF levels might be a biomarker reflecting synaptic or axonal loss.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Contactina 2/metabolismo , Anciano , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Autopsia , Biomarcadores/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurogranina/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismo
8.
Onco Targets Ther ; 10: 791-801, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243115

RESUMEN

Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid ß precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas.

9.
Clin Biochem ; 50(18): 1061-1066, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28860054

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is the most common cause of dementia in the world. As many AD biomarkers occur at rather low abundances in CSF or blood, techniques of very high sensitivity and accuracy are important as diagnostic tools in the clinic. Here, we aimed to provide proof of concept of the use of a single molecule detection technique, Fluorescence Correlation Spectroscopy (FCS) for detection of novel candidate biomarkers for AD. DESIGN AND METHODS: FCS detects the diffusion times of the antigen-antibody complexes in highly diluted sample solutions, thus eliminating the need of large sample volumes and allows estimating the concentration of the target antigen. We developed a FCS set-up for contactin-2, a neuronal cell adhesion molecule and a ligand of beta-secretase 1 (BACE1) and amyloid precursor protein (APP), the latter proteins being important players in AD. With this method, we investigated whether contactin-2 concentrations are changed after delayed storage and in patients with Alzheimer's disease. RESULTS: The FCS set-up for measuring contactin-2 in CSF had a lower limit of quantification (LLOQ) of 0.2ng/ml and intra- and inter-assay coefficients of variation (CVs) of 12.2% and 14.6% respectively. Contactin-2 levels were stable up to one week storage of CSF (n=3) at RT and 4°C. Further, contactin-2 levels were similar in probable AD patients (n=34, p=0.27) compared to patients with subjective cognitive decline (SCD) (n=11). CONCLUSIONS: FCS is a sensitive tool, which can be used for detecting biomarkers in the clinical setting using very low sample volumes (10µl) and can measure proteins in their native conformations in the body fluid.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Contactina 2/líquido cefalorraquídeo , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Complejo Antígeno-Anticuerpo/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Óptica/métodos , Fragmentos de Péptidos/líquido cefalorraquídeo , Espectrometría de Fluorescencia/métodos , Proteínas tau/líquido cefalorraquídeo
10.
Front Cell Neurosci ; 9: 265, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217189

RESUMEN

Contactin-associated protein-like 2 (Caspr2), also known as CNTNAP2, is a cell adhesion molecule that clusters voltage-gated potassium channels (Kv1.1/1.2) at the juxtaparanodes of myelinated axons and may regulate axonal excitability. As a component of the Kv1 complex, Caspr2 has been identified as a target in neuromyotonia and Morvan syndrome, but also in some cases of autoimmune limbic encephalitis (LE). How anti-Caspr2 autoimmunity is linked with the central neurological symptoms is still elusive. In the present study, using anti-Caspr2 antibodies from seven patients affected by pure LE, we determined that IgGs in the cerebrospinal fluid of four out seven patients were selectively directed against the N-terminal Discoïdin and LamininG1 modules of Caspr2. Using live immunolabeling of cultured hippocampal neurons, we determined that serum IgGs in all patients strongly targeted inhibitory interneurons. Caspr2 was highly detected on GAD65-positive axons that are surrounding the cell bodies and at the VGAT-positive inhibitory presynaptic contacts. Functional assays indicated that LE autoantibodies may induce alteration of Gephyrin clusters at inhibitory synaptic contacts. Next, we generated a Caspr2-Fc chimera to reveal Caspr2 receptors on hippocampal neurons localized at the somato-dendritic compartment and post-synapse. Caspr2-Fc binding was strongly increased on TAG-1-transfected neurons and conversely, Caspr2-Fc did not bind hippocampal neurons from TAG-1-deficient mice. Our data indicate that Caspr2 may participate as a cell recognition molecule in the dynamics of inhibitory networks. This study provides new insight into the potential pathogenic effect of anti-Caspr2 autoantibodies in central hyperexcitability that may be related with perturbation of inhibitory interneuron activity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda