Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mikrochim Acta ; 190(8): 286, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417989

RESUMEN

The application of copper-based nanoparticles synthesized via green synthesis and their integration with a wearable electrode is reported for designing a flexible catalytic electrode on a glove for onsite electroanalysis of paraquat. A copper precursor and an orange extract from Citrus reticulata are used to synthesize an economical electrocatalytic material for supporting the selective and sensitive detection of paraquat. The electrode yields multidimensional fingerprints due to two redox couples in a square wave voltammogram, corresponding to the presence of paraquat. The developed lab-on-a-finger sensor provides the fast electroanalysis of paraquat within 10 s, covering a wide range from 0.50 to 1000 µM, with a low detection limit down to 0.31 µM and high selectivity. It is also possible to use this sensor at a fast scan rate as high as 6 V s-1 (< 0.5 s for a scan). This wearable glove sensor allows the user to directly touch and analyze samples, such as surfaces of vegetables and fruits, to screen the contamination. It is envisioned that these glove-embedded sensors can be applied to the on-site analysis of food contamination and environments.


Asunto(s)
Nanopartículas , Dispositivos Electrónicos Vestibles , Cobre , Paraquat/análisis , Electrodos
2.
J Environ Manage ; 338: 117804, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996570

RESUMEN

The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.


Asunto(s)
Proteínas de Escherichia coli , Nanopartículas del Metal , Ratones , Animales , Cobre/química , Escherichia coli , Nanopartículas del Metal/química , Bacterias , Oxidación-Reducción , Antibacterianos/química , Proteínas de Ciclo Celular
3.
Biomaterials ; 308: 122565, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38603823

RESUMEN

As bacterial keratitis progresses rapidly, prompt intervention is necessary. Current diagnostic processes are time-consuming and invasive, leading to improper antibiotics for treatment. Therefore, innovative strategies for diagnosing and treating bacterial keratitis are urgently needed. In this study, Cu2-xSe@BSA@NTRP nanoparticles were developed by loading nitroreductase-responsive probes (NTRPs) onto Cu2-xSe@BSA. These nanoparticles exhibited integrated fluorescence imaging and antibacterial capabilities. In vitro and in vivo experiments showed that the nanoparticles produced responsive fluorescence signals in bacteria within 30 min due to an interaction between the released NTRP and bacterial endogenous nitroreductase (NTR). When combined with low-temperature photothermal therapy (PTT), the nanoparticles effectively eliminated E. coli and S. aureus, achieved antibacterial efficacy above 95% and facilitated the re-epithelialization process at the corneal wound site in vivo. Overall, the Cu2-xSe@BSA@NTRP nanoparticles demonstrated potential for rapid, noninvasive in situ diagnosis, treatment, and visualization assessment of therapy effectiveness in bacterial keratitis.


Asunto(s)
Antibacterianos , Escherichia coli , Queratitis , Nanopartículas , Nitrorreductasas , Animales , Nitrorreductasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Nanopartículas/química , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Escherichia coli/efectos de los fármacos , Imagen Óptica/métodos , Staphylococcus aureus/efectos de los fármacos , Ratones , Terapia Fototérmica/métodos , Humanos , Cobre/química
4.
Front Immunol ; 15: 1344098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711511

RESUMEN

Inflammatory responses, especially chronic inflammation, are closely associated with many systemic diseases. There are many ways to treat and alleviate inflammation, but how to solve this problem at the molecular level has always been a hot topic in research. The use of nanoparticles (NPs) as anti-inflammatory agents is a potential treatment method. We synthesized new hollow cerium oxide nanomaterials (hCeO2 NPs) doped with different concentrations of Cu5.4O NPs [the molar ratio of Cu/(Ce + Cu) was 50%, 67%, and 83%, respectively], characterized their surface morphology and physicochemical properties, and screened the safe concentration of hCeO2@Cu5.4O using the CCK8 method. Macrophages were cultured, and P.g-lipopolysaccharide-stimulated was used as a model of inflammation and co-cultured with hCeO2@Cu5.4O NPs. We then observe the effect of the transcription levels of CTSB, NLRP3, caspase-1, ASC, IL-18, and IL-1ß by PCR and detect its effect on the expression level of CTSB protein by Western blot. The levels of IL-18 and IL-1ß in the cell supernatant were measured by enzyme-linked immunosorbent assay. Our results indicated that hCeO2@Cu5.4O NPs could reduce the production of reactive oxygen species and inhibit CTSB and NLRP3 to alleviate the damage caused by the inflammatory response to cells. More importantly, hCeO2@Cu5.4O NPs showed stronger anti-inflammatory effects as Cu5.4O NP doping increased. Therefore, the development of the novel nanomaterial hCeO2@Cu5.4O NPs provides a possible new approach for the treatment of inflammatory diseases.


Asunto(s)
Antiinflamatorios , Cerio , Cobre , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cerio/farmacología , Cerio/química , Transducción de Señal/efectos de los fármacos , Animales , Ratones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Nanopartículas , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37037205

RESUMEN

Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Humanos , Cobre , Distribución Tisular , Antibacterianos/uso terapéutico
6.
J Hazard Mater ; 441: 129895, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36087535

RESUMEN

In this study, a graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) was prepared and employed for peracetic acid (PAA) activation. The characterization of G@Cu-NPs confirmed that the as-prepared material was composed of Cu0 and Cu2O inside and encapsulated by a graphene shell. Experimental results suggested that the synthesized G@Cu-NPs could activate PAA to generate free radicals for efficiently removing sulfamethazine (SMT) under neutral condition. The formation of graphene shells could strongly facilitated electron transfer from the core to the surface. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that organic radicals (R-O•) and hydroxyl radicals (•OH) were generated in the G@Cu-NPs/PAA system, and R-O• (including CH3CO3• and CH3CO2•) was the main contributor to the elimination of SMT. The possible SMT degradation pathways and mechanisms were proposed, and the toxicity of SMT and its intermediates was predicted with the quantitative structure-activity relationship (QSAR) analysis. Besides, the effects of some key parameters, common anions, and humic acid (HA) on the removal of SMT in the G@Cu-NPs/PAA system were also investigated. Finally, the applicability of G@Cu-NPs/PAA system was explored, showing that the G@Cu-NPs/PAA system possessed satisfactory adaptability to treat different water bodies with admirable reusability and stability.


Asunto(s)
Grafito , Nanopartículas , Contaminantes Químicos del Agua , Dióxido de Carbono , Cobre , Sustancias Húmicas , Peróxido de Hidrógeno , Oxidación-Reducción , Ácido Peracético , Sulfametazina , Agua
7.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564206

RESUMEN

The widespread use of copper-based nanoparticles expands the possibility that they enter the soil combined with heavy metals, having a toxic effect and posing a threat to the safety of vegetables. In this study, single and combined treatments of 2 mg/L Cd, 20 mg/L Cu NPs and 20 mg/L CuO NPs were added into Hoagland nutrient solution by hydroponics experiments. The experimental results show that copper-based Nanoparticles (NPs) can increase the photosynthetic rate of plants and increase the biomass of Brassica. Cu NPs treatment increased the Superoxide Dismutase (SOD), Peroxidase (POD) and catalase (CAT) activities of Brassica, and both NPs inhibited ascorbate peroxidase (APX) activity. We observed that Cd + Cu NPs exhibited antagonistic effects on Cd accumulation, inhibiting it by 12.6% in leaf and 38.6% in root, while Cd + CuO NPs increased Cd uptake by 73.1% in leaves and 22.5% in roots of Brassica. The Cu content in the shoots was significantly negatively correlated with Cd uptake. The Cd content of each component in plant subcellular is soluble component > cytoplasm > cell wall. Cu NPs + Cd inhibited the uptake of Zn, Ca, Fe, Mg, K and Mn elements, while CuO NPs + Cd promoted the uptake of Mn and Na elements. The results show that copper-based nanoparticles can increase the oxidative damage of plants under cadmium stress and reduce the nutritional value of plants.

8.
Antibiotics (Basel) ; 11(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35884145

RESUMEN

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae reduces kiwifruit crop yield and quality, leading to economic losses. Unfortunately, few agents for its control are available. We prepared three kinds of copper-based nanoparticles and applied them to control kiwifruit bacterial canker. The successful synthesis of Cu(OH)2 nanowires, Cu3(PO4)2 nanosheets, and Cu4(OH)6Cl2 nanoparticles were confirmed by transmission and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The minimum bactericidal concentrations (MBCs) of the three nanoparticles were 1.56 µg/mL, which exceeded that of the commercial agent thiodiazole copper (MBC > 100 µg/mL). The imaging results indicate that the nanoparticles could interact with bacterial surfaces and kill bacteria by inducing reactive oxygen species' accumulation and disrupting cell walls. The protective activities of Cu(OH)2 nanowires and Cu3(PO4)2 nanosheets were 59.8% and 63.2%, respectively, similar to thiodiazole copper (64.4%) and better than the Cu4(OH)6Cl2 nanoparticles (40.2%). The therapeutic activity of Cu4(OH)6Cl2 nanoparticles (67.1%) bested that of Cu(OH)2 nanowires (43.9%), Cu3(PO4)2 nanosheets (56.1%), and thiodiazole copper (53.7%). Their therapeutic and protective activities for control of kiwifruit bacterial canker differed in vivo, which was related to their sizes and morphologies. This study suggests these copper-based nanoparticles as alternatives to conventional bactericides for controlling kiwifruit diseases.

9.
Chemosphere ; 281: 130940, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289610

RESUMEN

Copper-based nanoparticles (Cu-based NPs) have been gaining wide attention in agricultural applications due to their diverse characteristics and multipurpose properties. This includes their use in agrochemicals for efficient delivery and controlled release of pesticides and fertilizers. However, their excessive usage over a long duration of time could pose potential risks to the soil system. Further, they are known for their well-established anti-microbial effects which could be detrimental to soil health, particularly to the activities of soil microbes, which play a significant role in the functioning of terrestrial and agroecosystems. Thus, there is a great need to clearly understand these uniquely nanospecific properties of Cu-based NPs along with mode-of-action, effect on soil processes, soil organisms, and plants. This paper examines the current literature on Cu-based NPs to provide a systematic understanding of their potential impacts on the soil-plant environment. It explores their rising application and usage in agriculture along with their possible interaction with various soil components and the potential factors influencing it. It further investigates their uptake, translocation, and distribution in plants in various exposure media. It summarises that the dissolution, biotransformation, and bioavailability of Cu-based NPs in the soil are governed by several factors, like soil type, soil pH, and organic matter content. Further, environmental factors, time duration, and presence of other pollutants could also influence their biotransformation and soil toxicity. Finally, this review seeks to provide future perspectives that need attention for investigation purposes.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Contaminantes del Suelo , Cobre/toxicidad , Plantas , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
10.
J Inorg Biochem ; 133: 24-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24441110

RESUMEN

Copper based nanoparticles (Cu-based NPs) of different compositions and sizes have been hydrothermally synthesized by varying the reaction time in the presence of the biocompatible surfactants polyoxyethylene (20) sorbitan laurate (Tween 20) and polyethylene glycol 8000 (PEG 8000). Effective control of the above synthetic parameters gave rise to Cu, Cu2O and Cu/Cu2O NPs of 10-44 nm. The antibacterial activity of the NPs was screened against Gram-positive (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus) and Gram-negative (Xanthomonas campestris, Escherichia coli) bacteria. The Cu-based NPs induce pDNA degradation in a dose-dependent manner as well as extensive ds CT-DNA degradation. Cu2O NPs of 16 nm and 12 nm exhibit the lowest IC50 values (2.13 µg/mL and 3.7 µg/mL) against B. cereus and B. subtilis, respectively. The agarose gel electrophoresis of ds CT-DNA treated with Cu2O NPs demonstrated degradation at high concentration. In lower concentrations, viscosity measurements indicated groove binding. In regard to the enhanced antibacterial effect and specificity of Cu2O NPs against the Gram-positive strains, the activity pathway was further explored and ROS production and lipid peroxidation verified. The released copper ions 5.15 mg/L in distilled water and 16.32 mg/L in nutrient medium, found below the critical value to inhibit bacterial growth and thus nanosized composition effect is predominant.


Asunto(s)
Antibacterianos/síntesis química , Cobre/química , ADN/química , Nanopartículas del Metal/química , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Staphylococcus aureus/efectos de los fármacos
11.
Biomaterials ; 312: 122720, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39084098

RESUMEN

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.


Asunto(s)
Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanopartículas , Osteoartritis , Péptidos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Nanopartículas/química , Humanos , Diferenciación Celular/efectos de los fármacos , Péptidos/química , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis/efectos de los fármacos , Ratones , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/farmacología , Ingeniería de Tejidos/métodos , Regeneración/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda