Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
BMC Genomics ; 25(1): 972, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39415101

RESUMEN

BACKGROUND: The Plant-specific AP2/ERF gene family encodes proteins involved in various biological and physiological processes. Although the genome of Coptis chinensis Franch, a plant producing benzylisoquinoline alkaloids (BIAs), has been sequenced at the chromosome level, studies on the AP2/ERF gene family in C. chinensis are lacking. Thus, a genome-wide identification of AP2/ERF gene family in C. chinensis was conducted to explore its role in BIAs biosynthesis. RESULTS: A total of 96 CcAP2/ERF genes were identified and categorized into five subfamilies, including 43 ERFs, 32 DREBs, 17 AP2s, 3 RAVs, and 1 Soloist, based on their structural domains. These CcAP2/ERF genes were unevenly distributed across nine chromosomes. Analysis of gene duplication events identified 17 CcAP2/ERF gene pairs in the genome, with 7 involved in tandem duplication events and 10 involved in segmental duplicate events, indicating that both types of duplications contributed to the expansion of the AP2/ERF gene family. The Ka/Ks ratio analysis suggested that the CcAP2/ERF gene family underwent strong purifying selection. Two phytohormones, methyl jasmonate and abscisic acid, were identified as potential key inducers of BIAs biosynthesis due to the cis-acting element prediction. Analysis of the spatial transcriptomic data revealed that 28 differentially expressed AP2/ERF genes had the highest or relatively higher expression levels in the rhizome, 17 of which positively correlated with the tissue-specific accumulation of BIAs. Further real-time PCR verification and protein-protein interaction analysis indicated that DREB1B might be one of the central regulators in a highly complex BIAs biosynthesis network. CONCLUSION: These findings provide significant insight into the function of AP2/ERF genes in C. chinensis, particularly in the regulatory network of BIAs biosynthesis in C. chinensis. This study also identifies candidate genes for metabolic engineering to increase BIAs content in C. chinensis.


Asunto(s)
Bencilisoquinolinas , Coptis , Familia de Multigenes , Proteínas de Plantas , Coptis/genética , Coptis/metabolismo , Bencilisoquinolinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Duplicación de Gen , Genoma de Planta , Especificidad de Órganos/genética
2.
J Sep Sci ; 46(14): e2300094, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37339806

RESUMEN

Coptis chinensis Franch. and Sophora flavescens Ait. is a herbal pair frequently used in treating ulcerative colitis. However, the bio-disposition profile of the major components in the inflamed gut remains unclear, which is essential to understand the pharmacological material basis of this herb pair. Here we established an integral quantitative and chemometric method to deduce the colonic metabolism differences of this herbal pair in normal and colitis mice. With this LC-MS method, a total of 41 components have been found in the Coptis chinensis Franch. and Sophora flavescens Ait. extract, and 28 metabolites were found in the colon after oral administration. Alkaloid and its phase I metabolites were the main components in the colon of normal and colitis mice. The results of principal component analysis at 6 h after oral administration showed significant colonic metabolism differences between normal and colitis mice. Heamap results showed that colitis induced significant changes in the colonic bio-disposition of this herbal pair extract. In particular, in the context of colitis, the phase I metabolism of berberine, coptisine, jatrorrhizine, palmatine,and epiberberine has been inhibited. These results may provide a basis for understanding the pharmacological material basis of Coptis chinensis Franch. and Sophora flavescens Ait. in treating ulcerative colitis.


Asunto(s)
Alcaloides , Colitis Ulcerosa , Coptis , Medicamentos Herbarios Chinos , Animales , Ratones , Coptis chinensis , Sophora flavescens , Colitis Ulcerosa/tratamiento farmacológico , Quimiometría , Coptis/química , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/química
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142236

RESUMEN

Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)-methanol (MeOH)-water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.


Asunto(s)
Alcaloides , Alcaloides de Berberina , Berberina , Coptis , Medicamentos Herbarios Chinos , Neoplasias Gástricas , Alcaloides/análisis , Alcaloides/farmacología , Animales , Berberina/análogos & derivados , Berberina/farmacología , Alcaloides de Berberina/farmacología , Bromodesoxiuridina , Cloroformo , Cisplatino , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/química , Ácido Clorhídrico , Isoquinolinas , Metanol , Solventes , Neoplasias Gástricas/tratamiento farmacológico , Agua , Pez Cebra
4.
Ecotoxicol Environ Saf ; 171: 894-903, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30606507

RESUMEN

Coptis chinensis Franch., is a widely used medicinal plant in China. This plant is often contaminated by cadmium (Cd) and render health risk to human consumers. Understanding distribution of Cd and its chemical forms is important to evaluate accumulation of the metal and its detoxification mechanisms in this plant. Since few studies have focused on this aspect, we used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially locate Cd in rhizome cross-sections, and ICP-MS to analyze the Cd subcellular distribution and the chemical forms of Cd in different tissues. Rhizome bioimaging results showed that Cd was distributed predominantly within the periderm, cortex, pith, and root trace vascular bundle. The LA-ICP-MS results suggested that Ca2+ channels might be a pathway for Cd entry into the plant. Subcellular distribution data indicated that most of Cd was associated with the cell wall (41.8-77.1%) and the soluble fraction (14.4-52.7%) in all tissues. Analysis of chemical forms revealed that majority Cd existed in less mobile and less toxic forms in all tissues, and P could convert to insoluble phosphate with Cd to moderate Cd toxicity. The new understanding of Cd accumulation and detoxification might provide novel strategies for reducing the levels of Cd in C. chinensis Franch., thereby mitigating its potential transfer to humans and providing a theoretical basis for evaluating the Cd status in other medicinal plants. Further, our findings might provide a basis for establishing a reasonable Cd limit level of traditional Chinese medicinal materials.


Asunto(s)
Cadmio/análisis , Coptis/química , Cadmio/química , Cadmio/aislamiento & purificación , Cadmio/toxicidad , Fraccionamiento Celular , China , Espectrometría de Masas , Plantas Medicinales/química , Rizoma/química
5.
Curr Top Med Chem ; 24(23): 2013-2032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136504

RESUMEN

Coptis chinensis Franch. (Ranunculaceae, Coptis), a traditional Chinese medicine (TCM) with thousands of years of clinical use history, also a natural medicine available in many countries, has wide pharmacological mechanisms and significant bioactivity according to its traditional efficacy combined with modern scientific research. The quality marker (Q-marker) of C. chinensis Franch. is predicted in this paper based on the chemical composition and pharmacological effects of the plant, as well as the current system pharmacology, plant relatedness, biosynthetic pathways and quantitative analysis of multi-components (QAMS). Natural medicine has the advantage of being multi-component, multi-pathway and multi-target. However, there are few reports on safety evaluation. This review predicts the Q-marker of C. chinensis, the safety and efficacy of C. chinensis is provided. Studies from 1975 to 2023 were reviewed from PubMed, Elsevier, ScienceDirect, Web of Science, SpringerLink, and Google Scholar. Alkaloids and organic acids are the two main component categories of Q-Markers. The specific alkaloids identified through predictive results include berberine, coptisine, palmatine, epiberberine, jatrorrhizine, columbamine, and berberrubine. Quinic acid and malic acid, due to their influence on the content of alkaloids and their ability to aid in identifying the active components of C. chinensis, are also considered Q-markers. The research strategy of "exploring chemical components, exploring pharmacological activities, constructing pharmacological mechanism network and locating biosynthetic pathways" was used to accurately screen the quality markers of C. chinensis in this review and summarise the quality evaluation methods and criteria. In addition, we updated the biosynthetic pathway of C. chinensis and refined the specific synthetic pathways of jatrorrhizine (quality markers) and epiberberine (quality markers). Finally, we summarised the quality evaluation methods of C. chinensis, which provide an important reference for resource evaluation and provide a key reference for the discovery of new functional chemical entities for natural medicines.


Asunto(s)
Coptis , Control de Calidad , Coptis/química , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Alcaloides/química , Alcaloides/farmacología , Alcaloides/biosíntesis
6.
Comput Biol Med ; 178: 108804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941899

RESUMEN

Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.


Asunto(s)
Coptis , Medicamentos Herbarios Chinos , Gastritis Atrófica , Simulación de Dinámica Molecular , Farmacología en Red , Humanos , Coptis/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Berberina/química , Berberina/uso terapéutico , Berberina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Ethnopharmacol ; 324: 117790, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38253276

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) and Coptis chinensis Franch (CCF) are traditional herbal medicine pairs used for clearing heat and eliminating dampness, stopping diarrhea, and detoxification. Traditionally, these two herbs are combined and decocted together, but the modern preparation procedures separate them to avoid the large amount of precipitation generated from co-decoction. Thus, a conflict lies between the traditional and modern extraction processes of Scutellaria baicalensis Georgi - Coptis chinensis Franch (SBG-CCF). AIM OF STUDY: There is a conflict between traditional medical practices of SBG-CCF and the modern formulation industry. In this study, we investigated the differences in the effects and mechanisms of SBG-CCF extracted by decocting separately and combining decoctions, as well as the scientific effectiveness of traditional and modern treatment methods on both. Acute alcoholic liver injury (ALI) rats were used as the pathological model. MATERIALS AND METHODS: SD rats were divided into 8 groups, including blank group, model group, low, medium, and high dose groups of SBG-CCF separated decoction, low, medium, and high dose groups of SBG-CCF combined decoction. Acute alcoholic liver injury model was induced in rats by gradually increasing the dose of alcohol through gavage everyday using white wine with an alcohol content 52%. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) were used as indicators to assess the intervention effect of SBG-CCF. And the potential active ingredients of SBG-CCF and the targets related to ALI were screened using network pharmacology, and the prediction results of network pharmacology were verified by quantitative real-time fluorescence PCR (qRT-PCR). RESULTS: SBG-CCF decoction alone and six combinations of decoctions have different degrees of improvement on alcoholic liver injury, with significant efficacy in the middle-dose group, and the combined decoction was superior to the individual decoction. SBG-CCF gavage can reduce the activity of AST, ALT, TC, TG, LDH, and MDA in the serum and liver of ALI rats, while increasing the levels of SOD and GSH. Network pharmacological analysis identified 39 active components, mainly flavonoids and alkaloids. Enrichment analysis suggested that SBG-CCF may treat ALI through the regulation of tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), interleukin-17 (IL-17), apoptosis, and the Toll-like receptor signaling pathways. The key targets in the Disease-Signaling Pathway-Target Network were MAPK8, IKBKB, MAPK10, MAPK3, MAPK1, and AKT1. qRT-PCR results indicated that targets regulating inflammation and lipid metabolism are MAPK8, MAPK10, MAPK3, and AKT1. CONCLUSION: SBG-CCF separately extracts and combines decoction can alleviate acute alcoholic liver injury, and the effect of combined decoction is more significant than separate decoction, implying that the precipitate produced by the combination of the two is also an active substance. The resistance mechanism of SBG-CCF ALI may be related to the modulation of lipid metabolism, inhibition of lipid peroxidation, and oxidative stress. SBG-CCF has the characteristics of multi-component, multi-pathway, and multi-target resistance to ALI.


Asunto(s)
Coptis , Scutellaria , Ratas , Animales , Coptis chinensis , Scutellaria baicalensis , Ratas Sprague-Dawley , Hígado , Superóxido Dismutasa/metabolismo
8.
World J Diabetes ; 15(7): 1562-1588, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39099827

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. The Astragalus-Coptis drug pair is frequently employed in the management of DKD. However, the precise molecular mechanism underlying its therapeutic effect remains elusive. AIM: To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways. METHODS: The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform. The targets were predicted using the SwissTargetPrediction database, while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database. DKD targets were acquired from the GeneCards, Online Mendelian Inheritance in Man database, and DisGeNET databases, with common targets identified through the Venny platform. The protein-protein interaction network and the "disease-active ingredient-target" network of the common targets were constructed utilizing the STRING database and Cytoscape software, followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-clopedia of Genes and Genomes (KEGG) pathway enrichments were performed using the DAVID database. The tissue and organ distributions of key targets were evaluated. PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets. Finally, molecular dynamics (MD) simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins. RESULTS: A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability. CONCLUSION: This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment.

9.
Front Pharmacol ; 15: 1372527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523644

RESUMEN

Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.

10.
Anal Chim Acta ; 1287: 342067, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182374

RESUMEN

BACKGROUND: The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS: The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE: A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.


Asunto(s)
Alcaloides , Insuficiencia Cardíaca , Espectrometría Raman , Coptis chinensis , China , Isoquinolinas , Colorantes
11.
Am J Chin Med ; 51(8): 2195-2220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930330

RESUMEN

Coptis chinensis Franch (RC), has historically been used for the treatment of "Xiao Ke" and "Xia Li" symptoms in China. "Xia Li" is characterized by abdominal pain and diarrhea, which are similar to the clinical symptoms of ulcerative colitis (UC). For the first time, this study aims to compare the anti-colitis effects of berberine (BBR) and total RC alkaloids (TRCA) and investigate the underlying metabolites and gut microbiota biomarkers. Metabolomics results showed that several colitis-related biomarkers, including lysophosphatidyl ethanolamine, lysophosphatidylcholine, scopolamine-methyl-bromide, N1-methyl-2-pyridone-5-carboxamide, 4-hydroxyretinoic acid, and malic acid, were significantly improved in model mice after BBR and TRCA treatments. High-dose BBR and TRCA treatments reversed the mouse colon shortening caused by dextran sodium sulfate (DSS), alleviated bowel wall swelling, and reduced inflammatory cell infiltration. BBR and TRCA restored the damaged mucosa integrity in colitis mice by upregulating claudin 1 and occludin, preventing colon epithelium apoptosis by inhibiting the cleavage of caspase 3. Additionally, BBR and TRCA significantly decreased the richness of the pathogenic bacteria Bacteroides acidifaciens but increased the abundance of the probiotic Lactobacillus spp. Notably, TRCA exhibited superior anti-colitis effects to those of BBR. Thus, this agent warrants further study and application in the treatment of inflammatory bowel disease in the clinic.


Asunto(s)
Berberina , Colitis Ulcerosa , Colitis , Microbiota , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Berberina/farmacología , Coptis chinensis , Colon , Biomarcadores , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
12.
J Ethnopharmacol ; 304: 115994, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36535335

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The emergence and spread of antibiotic resistance bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), urgently need to develop alternative strategies or novel antibacterial drugs. Coptis chinensis Franch., one ancient Chinese herb, has been widely used for the treatment of intestine disease, such as diarrhea. Alkaloids are the major active compounds of Coptis chinensis Franch., and has anti-inflammatory, antioxidant, and antimicrobial effects. AIM OF THE STUDY: The aim of the study was tried to investigate the potential antibacterial effects of the alkaloids from Coptis chinensis Franch. and explore the mechanism. MATERIALS AND METHODS: A checkerboard assay, time-killing analysis, membrane functions assay, transcriptome analysis, and inducible resistance test showed the antibacterial effects and mechanisms of alkaloids from Coptis chinensis Franch. Hemolytic assay and MRSA-infected RAW264.7 cells were used to evaluate anti-virulence and anti-inflammatory activities of 13-methylberberine (13-MB). MRSA-infected Vero cells and mouse enteritis models were used to evaluate the anti-infectious effect of 13-MB against MRSA both in vitro and in vivo. RESULTS: 13-methylberberine (13-MB) displayed high bactericidal efficiency against methicillin-resistant S. aureus (MRSA). Mechanistic studies showed that 13-MB rapidly killed MRSA by interfering with the proton motive force, ROS generation and membrane fluidity via direct interaction with membrane phospholipids. 13-MB suppressed the virulence of MRSA, modulated the host immune response, and effectively eliminated MRSA in Vero cells. Importantly, 13-MB suppressed weight loss, inflammatory response, bacterial colonization and intestinal lesion in mouse enteritis caused by 13-MB susceptible and resistant S. aureus. CONCLUSION: These results supported the 13-MB has promising potential to be developed as natural drug with antibacterial activity, anti-virulence activity, and host modulation activity for the treatment of enteritis caused by MRSA.


Asunto(s)
Alcaloides , Enteritis , Staphylococcus aureus Resistente a Meticilina , Chlorocebus aethiops , Ratones , Animales , Células Vero , Antibacterianos/farmacología , Alcaloides/farmacología , Antiinflamatorios/farmacología , Enteritis/tratamiento farmacológico , Enteritis/prevención & control , Pruebas de Sensibilidad Microbiana
13.
J Ethnopharmacol ; 307: 116181, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36738944

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian-Houpo Decoction (HLHP), a classical prescription, has been used to treat gastrointestinal diseases for hundreds of years in TCM. However, the effective constituents and underlying mechanisms of HLHP in the treatment of ulcerative colitis (UC) have not been fully investigated. AIM OF THE STUDY: This study aimed to reveal the potential anti-UC mechanisms of 50% ethanol extraction of HL and HP (EHLHP), combining transcriptomes and network pharmacology, as well as the animal experiment verification. METHODS: Primarily, we identified the chemical composition of EHLHP via UPLC-QE-MS analysis. A visualization network with components-targets-pathways on UC treatment were constructed using network pharmacology. And then, the transcriptomics sequencing method was applied to screen out the differentially expressed genes (DEGs) of EHLHP in the treatment of UC. The key targets and pathways of EHLHP were selected by the combination of the network pharmacology and transcriptomics results. Ultimately, the potential mechanisms of EHLHP on DSS-induced UC mice were verified. RESULTS: A total of 34 components of EHLHP were identified by UPLC-QE-MS analysis. Combined with the analysis of network pharmacology and transcriptomics, there were 262 DEGs between the normal group and the model group, and 151 DEGs between the model group and the EHLHP group. At the same time, there are 79 interaction paths, such as PI3K-Akt signaling pathway, MAPK signaling pathway, etc. These results indicated that the anti-UC mechanisms would be involved in calcium signaling pathway, inflammatory signaling pathway (JAK-STAT, TNF-α, cGMP-PKG) and immune regulation (IL-17, B cell receptor). After 160 mg/kg and 320 mg/kg EHLHP were given to DSS induced UC mice, these typical symptoms could be significantly alleviated, such as the decrease of DAI value and inflammation level. The IHC staining results of ZO-1, Occludin and Claudin-1 suggested that the intestinal barrier of UC mice was enhanced by EHLHP. The expression of macrophages and immune cells in F4/80+, CD11c+, Gr-1+, NK1.1+ by FCM determination indicated that EHLHP could suppress UC by immunosuppression and macrophage polarization M1 to M2. CONCLUSION: The potential mechanisms of HLHP extract on DSS-induced UC mice were revealed, by the prediction of integrated analysis of transcriptomes and network pharmacology, and subsequently animal test verification. It would provide a viable strategy to elucidate the mechanisms of TCM classical formula.


Asunto(s)
Productos Biológicos , Colitis Ulcerosa , Animales , Ratones , Señalización del Calcio , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Mucosa Intestinal , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/farmacología
14.
J Ethnopharmacol ; 311: 116392, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028611

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch. (CCF), as an extensively used traditional Chinese medicine, has therapeutic effects on Alzheimer's disease (AD), but its mechanism of action has not yet been elucidated. AIM OF THE STUDY: This study aims to reveal the mechanism of action of CCF via the gut-brain axis, and provide a new strategy for the clinical treatment of AD. MATERIALS AND METHODS: APPswe/PS1ΔE9 mice were used as AD models, and were given CCF extract by intragastric administration. Barnes maze was used to test the therapeutic effect of CCF on the treatment of AD. To reveal the mechanism of action of CCF in the treatment of AD, Vanquish Flex UHPLC-orbitrap fusion lumos mass was chosen to detect endogenous differential metabolite; MetaboAnalyst 5.0 was applied to derive relevant metabolic pathways; similarly, to explore the effects of CCF on the gut-brain axis, Vanquish Flex UPLC-Orbitrap fusion lumos mass was utilized to detect the changes in the content of SCFAs in AD mice after CCF administration; the prototype components and metabolites in CCF were identified by UPLC/ESI/qTOF-MS, then their effects on Bifidobacterium breve were explored. RESULTS: CCF shortened the latency time of AD mice, improved the target quadrant ratio of AD mice, and made the maze roadmap simpler of AD mice; CCF regulated fifteen potential metabolites of AD mice, interestingly, ILA (indole-3-lactic acid) in SCFAs (short-chain fatty acids) was also included; CCF acted on histidine and phenylalanine metabolic pathways of AD mice; CCF increased the contents of acetic acid and ILA in AD mice; magnoflorine, jatrorrhizine, coptisine, groenlandicine, thalifendine, palmatine, berberine, epiberberine, hydroxylated jatrorrhizine, and 3-methoxydemethyleneberberine in CCF were detected in fecal samples of AD mice; magnoflorine, palmatrubine, 13-methylberberine, berberine, coptisine, and palmatine promoted the growth of Bifidobacterium breve. CONCLUSIONS: we have demonstrated that CCF acts on the gut-brain axis by regulating SCFAs to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Coptis , Medicamentos Herbarios Chinos , Ratones , Animales , Coptis chinensis , Enfermedad de Alzheimer/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
15.
J Ethnopharmacol ; 300: 115704, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096345

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis Fisch (RC) and Coptis chinensis Franch (RG) are traditional Chinese medicines, which are classic drug pair in prescriptions to treat gastrointestinal diseases. Multi-herb therapy is one of the most important features of traditional Chinese medicine, but due to the complex components of herbal decoctions, the substances that actually exert their medicinal effects have not been fully elucidated. The discovery of Glycyrrhiza uralensis Fisch and Coptis chinensis Franch supramolecular parts (RC-RG SA) can provide a new perspective for explaining the mechanism of drug-pair compatibility. AIM OF THE STUDY: The purpose of this study was to explore the active composition and identification of chemical constituents of RC-RG SA, and to explore the inhibitory effects of supramolecular parts on S. aureus and biofilm. MATERIALS AND METHODS: The micromorphology of RC-RG SA was characterized by SEM and DLS. Intermolecular forces between Glycyrrhiza uralensis Fisch and Coptis chinensis Franch determined by ITC. The chemical constituents of RC-RG SA were systematically analyzed by UPLC-ESI-MSn. The inhibitory effect of RC-RG SA on S. aureus was determined by turbidimetric method and plate coating method. The scavenging effect of RC-RG SA supramolecular parts on S. aureus biofilm were observed by MTT method, SEM and LSCM, respectively. RESULTS: The microstructure of RC-RG SA was spherical with a particle size of 161.6 nm. ITC proved that the reaction between decoction of RC and RG was exothermic. A total of 70 compounds were preliminarily identified in RC-RG SA, including 34 flavonoids, 34 alkaloids and 2 triterpenoids. The inhibitory effect of RC-RG supramolecular parts on S. aureus proliferation and the ability to clear S. aureus biofilm were better than RC-RG co-decoction and RC-RG non-supramolecular parts. CONCLUSIONS: The Glycyrrhiza uralensis Fisch and Coptis chinensis Franch co-decoctions' supramolecular components were an important substance that exerts its medicinal effect. Current study provided supramolecular strategies to reveal the active ingredients and the medicinal effect of the traditional Chinese medicine decoction.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Glycyrrhiza uralensis , Triterpenos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Flavonoides , Glycyrrhiza uralensis/química , Medicina Tradicional China , Staphylococcus aureus
16.
J Ethnopharmacol ; 317: 116864, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37393026

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) theory believes that clearing heat and promoting dampness is the main treatment method for chronic gastritis. Coptis chinensis Franch. has the effects of clearing heat, detoxifying, and anti-inflammatory; Magnolia officinalis var. biloba can be used to treat abdominal pain, cough, and asthma. Coptis chinensis Franch. and Magnolia officinalis var. biloba can regulate the balance of intestinal microbiota and inhibit inflammatory reactions. AIM: This study will verify the therapeutic effect of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis, and explore its mechanism through transcriptome sequencing. METHODS: Firstly, a rat chronic gastritis model was established, and the anal temperature and body weight changes of the rats before and after modeling were observed. Next, H&E staining, TUNEL assay and ELISA assay were performed on rat gastric mucosal tissues. Subsequently, the key fractions of Coptis chinensis Franch. and Magnolia officinalis var. biloba were obtained by high performance liquid chromatography (HPLC), and a GES-1 cell inflammation model was constructed to select the optimal monomer. Finally, the mechanism of action of Coptis chinensis Franch. and Magnolia officinalis var. biloba was explored through RNA seq. RESULTS: Compared with the control group, the rats in the administered group were in better condition, with higher anal temperature, reduced inflammatory response in gastric mucosal tissue and reduced apoptosis. The optimal fraction Coptisine was subsequently determined by HPLC and GES-1 cell model. RNA-seq analysis revealed that DEG was significantly enriched in ribosomes, NF-κB signaling pathway, etc. The key genes TPT1 and RPL37 were subsequently obtained. CONCLUSIONS: This study verified the therapeutic effects of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis by in vivo and in vitro experiments in rats, identified Coptisine as the optimal component, and obtained two potential target genes.


Asunto(s)
Coptis , Gastritis , Magnolia , Ratas , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Coptis chinensis , Magnolia/química , Coptis/química , Fiebre , Gastritis/tratamiento farmacológico
17.
J Ethnopharmacol ; 300: 115675, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36075275

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheum palmatum L. (RP) and Coptis chinensis Franch. (CC), frequently used as herbal pair (HP) in clinical practicing of traditional Chinese medicine, exerted predominate efficacies in colitis treatment. However, the mechanism of their synergism lacks scientific explanation. AIM OF THE STUDY: By integrating network pharmacology and DSS-induced colitis model, the anti-colitis effects and synergistic molecular mechanisms of RP-CC combination was determined. MATERIALS AND METHODS: In vivo study, mice were divided into control, model, RP, CC and RP-CC (low, middle, high) groups, 2.5% DSS was administrated to induce colitis for consecutive 7 days, subsequently, the therapeutic effects were evaluated from body weight changes, disease activity index (DAI), and pathological conditions. After determining the shared and exclusive targets of RP and CC, respectively by network pharmacology, CETSA, WB, and qPCR were utilized to verify the action modes of RP and CC on specific targets. RESULTS: Compared to RP or CC used alone, RP-CC combination can significantly protect colon tissues from inflammatory damage in a dose-dependent manner via remarkably alleviating DAI and colon shortening. Network pharmacological analysis suggested that AKT1 would be the core target for RP-CC synergism since these two herbs could simultaneously but non-competitively bind to AKT1 at different sits. Furthermore, RP and CC could also influencing HIF and MAPK pathways, respectively, these additional actions attribute to more optimizing effectiveness towards colitis. CONCLUSION: In contrast to the mild therapeutic effects of RP or CC individually, RP-CC herb pair could exert strong and synergistic effects in treatment of colitis via non-competitive binding to AKT1 simultaneously, as well as exclusively influencing MAPK and HIF pathways. Our study not only provides the evidence for understanding the combined effect of RP and CC, but also brings up a new strategy and suggestive thoughts for the rationality of HP-based TCM formula.


Asunto(s)
Colitis , Coptis , Medicamentos Herbarios Chinos , Rheum , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Ratones , Farmacología en Red
18.
Front Oncol ; 13: 1198467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404762

RESUMEN

The drug pair consisting of Sophora flavescens Aiton (Sophorae flavescentis radix, Kushen) and Coptis chinensis Franch. (Coptidis rhizoma, Huanglian), as described in Prescriptions for Universal Relief (Pujifang), is widely used to treat laxation. Matrine and berberine are the major active components of Kushen and Huanglian, respectively. These agents have shown remarkable anti-cancer and anti-inflammatory effects. A mouse model of colorectal cancer was used to determine the most effective combination of Kushen and Huanglian against anti-colorectal cancer. The results showed that the combination of Kushen and Huanglian at a 1:1 ratio exerted the best anti-colorectal cancer effect versus other ratios. Moreover, the anti-colorectal cancer effect and potential mechanism underlying the effects of matrine and berberine were evaluated by the analysis of combination treatment or monotherapy. In addition, the chemical constituents of Kushen and Huanglian were identified and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 67 chemical components were identified from the Kushen-Huanglian drug pair (water extraction), and the levels of matrine and berberine were 129 and 232 µg/g, respectively. Matrine and berberine reduced the growth of colorectal cancer and relieved the pathological conditions in mice. In addition, the combination of matrine and berberine displayed better anti-colorectal cancer efficacy than monotherapy. Moreover, matrine and berberine reduced the relative abundance of Bacteroidota and Campilobacterota at phylum level and that of Helicobacter, Lachnospiraceae_NK4A136_group, Candidatus_Arthromitus, norank_f_Lachnospiraceae, Rikenella, Odoribacter, Streptococcus, norank_f_Ruminococcaceae, and Anaerotruncus at the genus level. Western blotting results demonstrated that treatment with matrine and berberine decreased the protein expressions of c-MYC and RAS, whereas it increased that of sirtuin 3 (Sirt3). The findings indicated that the combination of matrine and berberine was more effective in inhibiting colorectal cancer than monotherapy. This beneficial effect might depend on the improvement of intestinal microbiota structure and regulation of the RAS/MEK/ERK-c-MYC-Sirt3 signaling axis.

19.
Front Pharmacol ; 14: 1312683, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074160

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2022.907826.].

20.
J Pharm Biomed Anal ; 227: 115234, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773541

RESUMEN

The combined efficacy in lowering serum lipid levels and increasing kidney protection of Plantago asiatica L. seed (Plantago) and Coptis chinensis Franch. rhizoma (Coptis) is far better than the effects of either herb alone. This finding suggests that there must be some degree of herb-herb interactions (HHI) affect potency. Here, we chose geniposidic acid (GPA), acteoside (ACT), and plantagoamidinic acid A (PLA) as active components in Plantago, and berberine (BBR) as the active component in Coptis, and, using transporter gene-transfected Madin-Darby canine kidney (MDCK) cells in combination with specific substrates and inhibitors, investigated Plantago- Coptis HHIs. We also established a UPLC-MS/MS analytical method to determine substrate content. Results showed that PLA in Plantago was a substrate of rOCT1/2 and rMATE1, and had inhibitory effects on rOCT2 and rMATE1. We also found that ACT is a substrate of rMATE1, but GPA was not a substrate of any transporter that we investigated. When BBR was used as the substrate, the inhibition rate of 10 µM PLA was 53.6% on rOCT2 and 31.5% on rMATE1. The inhibition rates of 30 µM ACT and 30 µM GPA on rMATE1 were 47.0% and 31.0%, respectively. Thus, our findings suggest that GPA, ACT, PLA, and BBR have competitive interactions that are driven by the rOCT2 and rMATE1 transporters. These interactions affect the transport and excretion of compounds and result in efficacy changes after co-administration.


Asunto(s)
Coptis , Plantago , Animales , Perros , Espectrometría de Masas en Tándem/métodos , Coptis chinensis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Proteínas de Transporte de Catión Orgánico , Coptis/química , Semillas , Poliésteres
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda