Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Antonie Van Leeuwenhoek ; 115(6): 821-837, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460063

RESUMEN

Hermetia illucens larvae (black soldier fly larvae, BSFL) convert efficiently organic waste to high quality biomass. To gain knowledge on the specific functions of gut microbes in this process it is a prerequisite to culture members of the core gut microbiota. Two different cultivation strategies were applied here for this purpose, a dilution-to-extinction cultivation and direct plating using six different media to culture aerobic heterotrophic bacteria. A total of 341 isolates were obtained by the dilution-to-extinction cultivation and 138 isolates by direct plating from guts of BSFL reared on chicken feed. Bacterial isolates were phylogenetically identified at the genus level by 16S rRNA gene sequencing (phylotyping) and differentiated at the strain level by genomic fingerprinting (genotyping). The main proportion of isolates was assigned to Proteobacteria, Firmicutes (Bacilli), and Actinobacteria. Predominant genera discussed in literature as member of a potential BSFL core gut microbiota, Providencia, Proteus, Morganella, Enterococcus, Bacillus, and members of the family Enterobacteriaceae, were isolated. A high intra-phylotype diversity was obtained by genomic fingerprinting which was especially enhanced by the dilution-to-extinction cultivation. This study showed that the application of different cultivation strategies including a dilution-to-extinction cultivation helps to culture a higher diversity of the BSFL gut microbiota and that genomic fingerprinting gives a better picture on the genetic diversity of cultured bacteria which cannot be covered by a 16S rRNA gene sequence based identification alone.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Animales , Bacterias/genética , Pollos , Dípteros/microbiología , Larva/microbiología , ARN Ribosómico 16S/genética
2.
Anaerobe ; 67: 102314, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33359396

RESUMEN

We have a vast knowledge on human intestinal microbiota but it can still be regarded incomplete. One of the objectives of scientists using so-called "omics" techniques is to be interested in the consequences that drugs can have on the composition of the intestinal microbiota and inversely. To date, few publications have reported the effects of drugs on the growth of bacteria composing this microbiota using a "culturomics" approach. We focused on antibiotics commonly prescribed for which the only published are the susceptibility of the pathogenic strains and not that of the commensal strains. The aim of our study was to determine the sensitivity of 30 strains considered to represent the intestinal core microbiota to 8 antibiotics and to study the possible modification of these molecules by bacteria. The 30 bacterial strains were cultured under anaerobic conditions in order to determine their sensitivity to the antibiotics. After 48 h of culture, the supernatants were also analyzed via UHPLC-MS/MS in order to determine if the antibiotics have been chemically modified. Under the current experimental conditions, cefpodoxime, metronidazole, erythromycin, sulfamethozaxole, trimethoprim and the trimethoprim/sulfamethozaxole combination have little impact on the core microbiota strain growth. On the contrary, moxifloxacin and amoxicillin inhibit the growth of numerous strains of our panel. Using UHPLC-MS/MS analyses, we have shown that some antibiotics can be modifed by the bacteria composing the intestinal core microbiome. The bacteria that make up the intestinal microbiota core are impacted by the antibiotics most commonly prescribed in clinics today and inversely.


Asunto(s)
Antibacterianos/farmacología , Cromatografía Liquida/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Amoxicilina/farmacología , Humanos , Tamizaje Masivo , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Sulfametoxazol/farmacología
3.
BMC Genomics ; 20(1): 829, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703624

RESUMEN

BACKGROUND: Scylla paramamosain is a commercially important mud crab. The microbiota is a community that inhabits the crab intestine, and is important for physiological functional and host health. RESULTS: Proteobacteria, Firmicutes, Bacteroidetes, Tenericutes, Spirochaetae and Fusobacteria were the dominant phyla of the 36 representative phyla. Eleven genera of the 820 representative genera were considered as core gut microbiota and were distributed in the five dominant phyla. The core genus of the Proteobacteria included Arcobacter, Photobacterium, Vibrio, Shewanella and Desulfovibrio. The other four phyla contained one or two genera. Male and female crab samples had two different core genera, (male samples: Psychrilyobacter & Lactococcus; female samples: Clostridium_sensu_stricto_11 and Candidatus_Bacilloplasma). CONCLUSIONS: This is the first time core intestinal microbiota have been identified in crab from nine coastal regions of southern China. This study provides sequencing data related to the gut microbiota of S. paramamosain, and may contribute to probiotic development for S. paramamosain aquaculture industries.


Asunto(s)
Braquiuros/genética , Braquiuros/microbiología , Microbioma Gastrointestinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , China , Femenino , Masculino
4.
Nutrients ; 15(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37049450

RESUMEN

With an ageing population, healthy longevity is becoming an important scientific concern. The longevity phenomenon is closely related to the intestinal microflora and is highly complicated; it is challenging to identify and define the core gut microbiota associated with longevity. Therefore, in this study, 16S rRNA sequencing data were obtained from a total of 135 faecal samples collected as part of the latest sampling and pre-collection initiative in the Guangxi longevity area, and weighted gene co-expression network analysis (WGCNA) was used to find a mediumpurple3 network module significantly associated with the Guangxi longevity phenomenon. Five core genera, namely, Alistipes, Bacteroides, Blautia, Lachnospiraceae NK4A136 group, and Lactobacillus, were identified via network analysis and random forest (RF) in this module. Two potential probiotic strains, Lactobacillus fermentum and Bacteroides fragilis, were further isolated and screened from the above five core genera, and then combined and used as an intervention in naturally ageing mice. The results show a change in the key longevity gut microbiota in mice toward a healthy longevity state after the intervention. In addition, the results show that the probiotic combination effectively ameliorated anxiety and necrosis of hippocampal neuronal cells in senescent mice, improving their antioxidant capacity and reducing their inflammation levels. In conclusion, this longer-term study provides a new approach to the search for longevity hub microbiota. These results may also provide an important theoretical reference for the healthification of the intestinal microflora in the general population, and even the remodelling of the structure of the longevity-state intestinal microflora.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Ratones , Animales , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S/genética , China , Envejecimiento/fisiología
5.
Front Microbiol ; 14: 1243334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727291

RESUMEN

Introduction: The mud crab, Scylla paramamosain, holds great commercial significance as a marine crustacean widely cultivated in the Indo-Pacific region. Understanding the core gut microbiota of aquatic animals is crucial for their overall health and growth, yet the core gut microbiota of mud crab remains poorly characterized. Methods: In this study, we gathered gut samples from mud crabs across five locations within Sanmen Bay, China. Through the utilization of high-throughput sequencing, we delved into the composition of the gut microbial community and identified the core gut microbiome of mud crab. Results: Our results demonstrate that the gut microbial diversity of mud crab did not exhibit significant variation among the five sampling sites, although there were some differences in community richness. At the phylum level, we identified 35 representative phyla, with Firmicutes, Proteobacteria, Bacteroidota, and Campilobacterota as the dominant phyla. Among the 815 representative genera, we discovered 19 core genera, which accounted for 65.45% of the total sequences. These core genera were distributed across 6 phyla, and among them, Photobacterium exhibited the highest average relative abundance. Discussion: Photobacterium has probiotic activity and may play a crucial role in enhancing the immune response of the host and maintaining the diversity of the gut microbiota. Moreover, we observed a positive correlation between the relative abundance of core genera and the stability of the gut microbial community. Furthermore, our findings revealed distinct differences in gut microbial composition and specific taxa between the sexes of mud crab. These differences subsequently influenced the functionality of the gut microbial community. Overall, our investigation sheds light on the core gut microbiota of mud crab, emphasizing the importance of core gut microbial communities in maintaining the health and growth of these commercially significant marine crustaceans.

6.
J Microbiol ; 56(5): 346-355, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29721832

RESUMEN

Gut microbial diversity and the core microbiota of the Jinhua pig, which is a traditional, slow-growing Chinese breed with a high body-fat content, were examined from a total of 105 fecal samples collected from 6 groups of pigs at 3 weaning ages that originated from 2 strains and were raised on 3 different pig farms. The bacterial community was analyzed following high-throughput pyrosequencing of 16S rRNA genes, and the fecal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatograph. Our results showed that Firmicutes and Bacteroidetes were the dominant phyla, and Lactobacillus, Streptococcus, Clostridium, SMB53, and Bifidobacterium were the most abundant genera. Fifteen predominant genera present in every Jinhua pig sample constituted a phylogenetic core microbiota and included the probiotics Lactobacillus and Bifidobacterium, and the SCFA-producing bacteria Clostridium, Prevotella, Bacteroides, Coprococcus, Roseburia, Ruminococcus, Blautia, and Butyricicoccus. Comparisons of the microbiota compositions and SCFA concentrations across the 6 groups of pigs demonstrated that genetic background and weaning age affected the structure of the gut microbiota more significantly than the farm. The relative abundance of the core genera in the pigs, including Lactobacillus, Clostridium, Prevotella, Bacteroides, Roseburia, Ruminococcus, Blautia, and Butyricicoccus varied dramatically in pigs among the 2 origins and 3 weaning ages, while Oscillospira, Megasphaera, Parabacteroides, and Corynebacterium differed among pigs from different farms. Interestingly, there was a more significant influence of strain and weaning age than of rearing farm on the SCFA concentrations. Therefore, strain and weaning age appear to be the more important factors shaping the intestinal microbiome of pigs.


Asunto(s)
Bacterias/clasificación , Granjas , Microbioma Gastrointestinal , Filogenia , Porcinos/microbiología , Animales , Bacterias/genética , China , ADN Bacteriano/análisis , Ácidos Grasos/análisis , Heces/microbiología , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Concentración de Iones de Hidrógeno , Consorcios Microbianos , Probióticos , ARN Ribosómico 16S/genética , Destete
7.
J Microbiol Biotechnol ; 26(10): 1723-1735, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27381339

RESUMEN

Pyrosequencing analysis of intestinal microflora from healthy Thai vegetarians and non-vegetarians exhibited 893 OTUs covering 189 species. The strong species indicators of vegetarians and non-vegetarians were Prevotella copri and Bacteroides vulgatus as well as bacteria close to Escherichia hermanii with % relative abundance of 16.9 and 4.5-4.7, respectively. Core gut microbiota of the vegetarian and non-vegetarian groups consisted of 11 and 20 different bacterial species, respectively, belonging to Actinobacteria, Firmicutes, and Proteobacteria commonly found in both groups. Two species, Faecalibacterium prausnitzii and Gemmiger formicilis, had a prevalence of 100% in both groups. Three species, Clostridium nexile, Eubacterium eligens, and P. copri, showed up in most vegetarians, whereas more diversity of Collinsella aerofaciens, Ruminococcus torques, various species of Bacteroides, Parabacteroides, Escherichia, and different species of Clostridium and Eubacterium were found in most non-vegetarians. Considering the correlation of personal characters, consumption behavior, and microbial groups, the age of non-vegetarians showed a strong positive correlation coefficient of 0.54 (p = 0.001) to Bacteroides uniformis but exhibited a moderate one to Alistipes finegoldii and B. vulgatus. Only a positive moderate correlation of body mass index and Parabacteroides distasonis appeared. Based on the significant abundance of potential pathogens, the microbiota of the non-vegetarian group showed an abundance of potential pathogen varieties of Bilophila wadsworthia, Escherichia coli, and E. hermannii, whereas that of the vegetarian group served for only Klebsiella pneumoniae. These results implied that the microbiota of vegetarians with high abundance of P. copri and low potential pathogen variety would be a way to maintain good health in Thais.


Asunto(s)
Bacterias , Dieta Vegetariana , Heces/microbiología , Microbioma Gastrointestinal , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacteroides , Estudios Transversales , Humanos , Persona de Mediana Edad , Prevotella , Tailandia/epidemiología
8.
Dis Model Mech ; 8(1): 1-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25561744

RESUMEN

The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.


Asunto(s)
Modelos Animales de Enfermedad , Intestinos/microbiología , Microbiota , Animales , Colitis/patología , Bases de Datos Factuales , Dieta , Genotipo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Intestinos/patología , Ratones , Obesidad/patología , Fenotipo , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda