Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Cell ; 186(4): 715-731.e19, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754048

RESUMEN

Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genética
2.
Cell ; 168(5): 801-816.e13, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215704

RESUMEN

DNMT3A mutations occur in ∼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by ∼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.


Asunto(s)
Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Leucemia Mieloide Aguda/genética , Células de la Médula Ósea/patología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Humanos , Leucemia Mieloide Aguda/patología , Mutación , Análisis de Secuencia de ADN
3.
Mol Cell ; 83(8): 1264-1279.e10, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36965480

RESUMEN

The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.


Asunto(s)
ARN Polimerasa II , Ribonucleoproteína Nuclear Pequeña U1 , Animales , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Empalmosomas/genética , Intrones/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme del ARN , Precursores del ARN/genética , Mamíferos/metabolismo
4.
Mol Cell ; 77(6): 1265-1278.e7, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31959557

RESUMEN

Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.


Asunto(s)
Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Histonas/metabolismo , Complejo Represivo Polycomb 2/química , Multimerización de Proteína , Animales , Diferenciación Celular , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Humanos , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Neoplasias , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/fisiología , Conformación Proteica , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell ; 75(3): 523-537.e10, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31256989

RESUMEN

Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.


Asunto(s)
ARN Largo no Codificante/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Islas de CpG/genética , Genoma/genética , Impresión Genómica/genética , Humanos , Ratones , Complejo Represivo Polycomb 1/genética , Regiones Promotoras Genéticas , Células Madre/metabolismo , Trofoblastos/metabolismo
6.
Cancer Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039804

RESUMEN

Evidence indicates that combinations of anti-EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)-low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS-wild-type tumors (31%). KRAS c.34G>T mutants showed higher CIMP-high prevalence (14%) and lower CIMP-negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T-mutated tumors were associated with cecal location, non-microsatellite instability (MSI)-high status, BRAF wild type, and PIK3CA mutation when compared with KRAS-wild-type tumors. Compared with BRAF-mutated tumors, KRAS c.34G>T mutants showed more frequent LINE-1 hypomethylation, a biomarker for early-onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF-wild-type colorectal carcinomas, compared with KRAS-wild-type tumors, multivariable-adjusted colorectal cancer-specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05-3.17) in KRAS c.34G>T (p.G12C)-mutated tumors (p = 0.035) and 1.57 (1.22-2.02) in other KRAS-mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma.

7.
Trends Genet ; 37(6): 547-565, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33494958

RESUMEN

Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.


Asunto(s)
Cromatina/genética , Silenciador del Gen/fisiología , Histonas/metabolismo , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , Alquinos , Animales , Cromatina/química , Cromatina/metabolismo , Histonas/genética , Humanos , Lisina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Vertebrados
8.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36764492

RESUMEN

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Asunto(s)
Adenocarcinoma , Adenoma , Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Ratones , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenoma/genética , Adenoma/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Islas de CpG/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Oxigenasas de Función Mixta/genética , Fenotipo , Proteínas Proto-Oncogénicas/genética
9.
Mol Carcinog ; 63(2): 266-274, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37846801

RESUMEN

Helicobacter pylori induces DNA methylation in gastric mucosa, which links to gastric cancer (GC) risk. In contrast, CpG island methylator phenotype (CIMP) is defined as high levels of cancer-specific methylation and provides distinct molecular and clinicopathological features of GC. The association between those two types of methylation in GC remains unclear. We examined DNA methylation of well-validated H. pylori infection associated genes in GC and its adjacent mucosa and investigated its association with CIMP, various molecular subtypes and clinical features. We studied 50 candidate loci in 24 gastric samples to identify H. pylori infection associated genes. Identified loci were further examined in 624 gastric tissue from 217 primary GC, 217 adjacent mucosa, and 190 mucosae from cancer-free subjects. We identified five genes (IGF2, SLC16A2, SOX11, P2RX7, and MYOD1) as hypermethylated in H. pylori infected gastric mucosa. In non-neoplastic mucosa, methylation of H. pylori infection associated genes was higher in patients with GC than those without. In primary GC tissues, higher methylation of H. pylori infection associated genes correlated with CIMP-positive and its related features, such as MLH1 methylated cases. On the other hand, GC with lower methylation of these genes presented aggressive clinicopathological features including undifferentiated histopathology, advanced stage at diagnosis. H. pylori infection associated DNA methylation is correlated with CIMP, specific molecular and clinicopathological features in GC, supporting its utility as promising biomarker in this tumor type.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Simportadores , Humanos , Metilación de ADN , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Fenotipo , Islas de CpG/genética , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética
10.
Mol Hum Reprod ; 30(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38704863

RESUMEN

Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Miometrio , Trabajo de Parto Prematuro , Contracción Uterina , Adulto , Animales , Femenino , Humanos , Ratones , Embarazo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol/metabolismo , Lipopolisacáridos/farmacología , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Miocitos del Músculo Liso/metabolismo , Miometrio/metabolismo , Trabajo de Parto Prematuro/metabolismo , Trabajo de Parto Prematuro/genética , Regiones Promotoras Genéticas , Contracción Uterina/efectos de los fármacos
11.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35134107

RESUMEN

Numerous cancer types have shown to present hypermethylation of CpG islands, also known as a CpG island methylator phenotype (CIMP), often associated with survival variation. Despite extensive research on CIMP, the etiology of this variability remains elusive, possibly due to lack of consistency in defining CIMP. In this work, we utilize a pan-cancer approach to further explore CIMP, focusing on 26 cancer types profiled in the Cancer Genome Atlas (TCGA). We defined CIMP systematically and agnostically, discarding any effects associated with age, gender or tumor purity. We then clustered samples based on their most variable DNA methylation values and analyzed resulting patient groups. Our results confirmed the existence of CIMP in 19 cancers, including gliomas and colorectal cancer. We further showed that CIMP was associated with survival differences in eight cancer types and, in five, represented a prognostic biomarker independent of clinical factors. By analyzing genetic and transcriptomic data, we further uncovered potential drivers of CIMP and classified them in four categories: mutations in genes directly involved in DNA demethylation; mutations in histone methyltransferases; mutations in genes not involved in methylation turnover, such as KRAS and BRAF; and microsatellite instability. Among the 19 CIMP-positive cancers, very few shared potential driver events, and those drivers were only IDH1 and SETD2 mutations. Finally, we found that CIMP was strongly correlated with tumor microenvironment characteristics, such as lymphocyte infiltration. Overall, our results indicate that CIMP does not exhibit a pan-cancer manifestation; rather, general dysregulation of CpG DNA methylation is caused by heterogeneous mechanisms.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Colorrectales/genética , Islas de CpG , Metilación de ADN , Humanos , Inestabilidad de Microsatélites , Mutación , Fenotipo , Microambiente Tumoral
12.
Biochem Soc Trans ; 52(1): 151-161, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38288743

RESUMEN

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.


Asunto(s)
Estudio de Asociación del Genoma Completo , Código de Histonas , Animales , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Histonas/metabolismo , Cromatina , Complejo Represivo Polycomb 2/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mamíferos/metabolismo
13.
Pathol Int ; 74(4): 167-186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38482965

RESUMEN

Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Renales , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Lesiones Precancerosas , Humanos , Epigenómica , Enfermedad del Hígado Graso no Alcohólico/patología , Patología Molecular , Carcinoma Hepatocelular/patología , Metilación de ADN , Carcinogénesis/genética , Neoplasias Hepáticas/patología , Neoplasias Renales/genética , Lesiones Precancerosas/patología , Islas de CpG
14.
BMC Biol ; 21(1): 179, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612705

RESUMEN

BACKGROUND: The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS: Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS: Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.


Asunto(s)
Quirópteros , Isocoras , Animales , Humanos , Mamíferos/genética , Quirópteros/genética , Aclimatación , Alelos
15.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000438

RESUMEN

Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.


Asunto(s)
Biomarcadores de Tumor , Metilación de ADN , Epigénesis Genética , Neoplasias , Telomerasa , Humanos , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Islas de CpG , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico , Telomerasa/genética
16.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791280

RESUMEN

Synchronous colorectal cancer (sCRC) is characterized by the occurrence of more than one tumor within six months of detecting the first tumor. Evidence suggests that sCRC might be more common in the serrated neoplasia pathway, marked by the CpG island methylator phenotype (CIMP), than in the chromosomal instability pathway (CIN). An increasing number of studies propose that CIMP could serve as a potential epigenetic predictor or prognostic biomarker of sCRC. Therapeutic drugs already used for treating CIMP-positive colorectal cancers (CRCs) are reviewed and drug selections for sCRC patients are discussed.


Asunto(s)
Neoplasias Colorrectales , Islas de CpG , Metilación de ADN , Fenotipo , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Islas de CpG/genética , Pronóstico , Biomarcadores de Tumor/genética , Epigénesis Genética , Antineoplásicos/uso terapéutico
17.
Br Poult Sci ; 65(3): 259-264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578288

RESUMEN

1. This study focused on the relationship between MITF mRNA expression and plumage colour in quail and the effect of promoter methylation on the expression of MITF mRNA.2. The CDS region of MITF mRNA was cloned by RT-PCR, followed by DNA sequencing. The RT-qPCR method was used to analyse the expression levels of MITF mRNA in dorsal skin tissue in Korean quail and Beijing white quail. The promoter region of the MITF gene was cloned, and the CpG island was predicted by the CpGplot program. The methylation levels of the CpG island were analysed using BS-PCR technology.3. Quail MITF mRNA contains a 1,476 bp complete ORF, which encodes a 492 amino acid residue protein. The MITF protein has no signal peptide or transmembrane region. The expression of MITF mRNA in dorsal tissue of Korean quail was significantly higher than that in Beijing white quail (p < 0.01). Abundant cis-elements and a 346 bp CpG island were found in the promoter region of the MITF gene. The average methylation level of the CpG island was 22 (22%) in Korean quail, and 46 (30%) in Beijing white quail (p < 0.05).4. The hypermethylation of the MITF gene promoter region in Beijing white quail resulted in a decrease in expression level, which was related to white feather colour.


Asunto(s)
Coturnix , Islas de CpG , Metilación de ADN , Plumas , Factor de Transcripción Asociado a Microftalmía , Pigmentación , Regiones Promotoras Genéticas , Animales , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Plumas/química , Coturnix/genética , Coturnix/metabolismo , Coturnix/fisiología , Pigmentación/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Expresión Génica , Secuencia de Bases , Secuencia de Aminoácidos , Masculino
18.
BMC Plant Biol ; 23(1): 140, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36915063

RESUMEN

BACKGROUND: Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS: In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS: This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.


Asunto(s)
Chrysanthemum , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Lignina/metabolismo , Filogenia , ADN , Regulación de la Expresión Génica de las Plantas
19.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33783485

RESUMEN

Tumor suppressor genes (TSGs) exhibit distinct evolutionary features. We speculated that TSG promoters could have evolved specific features that facilitate their tumor-suppressing functions. We found that the promoter CpG dinucleotide frequencies of TSGs are significantly higher than that of non-cancer genes across vertebrate genomes, and positively correlated with gene expression across tissue types. The promoter CpG dinucleotide frequencies of all genes gradually increase with gene age, for which young TSGs have been subject to a stronger evolutionary pressure. Transcription-related features, namely chromatin accessibility, methylation and ZNF263-, SP1-, E2F4- and SP2-binding elements, are associated with gene expression. Moreover, higher promoter CpG dinucleotide frequencies and chromatin accessibility are positively associated with the ability of TSGs to resist downregulation during tumorigenesis. These results were successfully validated with independent datasets. In conclusion, TSGs evolved specific promoter features that optimized cancer resistance through achieving high expression in normal tissues and resistance to downregulation during tumorigenesis.


Asunto(s)
Cromatina/metabolismo , Biología Computacional/métodos , Resistencia a Antineoplásicos/genética , Evolución Molecular , Genes Supresores de Tumor , Neoplasias/genética , Regiones Promotoras Genéticas , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cromatina/ultraestructura , Islas de CpG , Metilación de ADN , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Dominios y Motivos de Interacción de Proteínas , Transcripción Genética
20.
Brief Bioinform ; 22(1): 515-525, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31982909

RESUMEN

By reviewing previous CpG-related studies, we consider that the transcription regulation of about half of the human genes, mostly housekeeping (HK) genes, involves CpG islands (CGIs), their methylation states, CpG spacing and other chromosomal parameters. However, the precise CGI definition and positioning of CGIs within gene structures, as well as specific CGI-associated regulatory mechanisms, all remain to be explained at individual gene and gene-family levels, together with consideration of species and lineage specificity. Although previous studies have already classified CGIs into high-CpG (HCGI), intermediate-CpG (ICGI) and low-CpG (LCGI) densities based on CpG density variation, the correlation between CGI density and gene expression regulation, such as co-regulation of CGIs and TATA box on HK genes, remains to be elucidated. First, this study introduces such a problem-solving protocol for human-genome annotation, which is based on a combination of GTEx, JBLA and Gene Ontology (GO) analysis. Next, we discuss why CGI-associated genes are most likely regulated by HCGI and tend to be HK genes; the HCGI/TATA± and LCGI/TATA± combinations show different GO enrichment, whereas the ICGI/TATA± combination is less characteristic based on GO enrichment analysis. Finally, we demonstrate that Hadoop MapReduce-based MR-JBLA algorithm is more efficient than the original JBLA in k-mer counting and CGI-associated gene analysis.


Asunto(s)
Islas de CpG , Genes Esenciales , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Metilación de ADN , Humanos , TATA Box
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda