Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Microbiol Biotechnol ; 107(1): 187-200, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36474025

RESUMEN

Changes in the diversity of indigenous calcifying bacterial communities were determined before and after 1 year of biorepair treatment applied on indoor micro-cracked concrete walls. The biotreatment was based on the formation of an organo-mineral coating generated by Alkalihalobacillus pseudofirmus cultured in the presence of calcium lactate. Before and after the biotreatment, the calcifying bacterial strains belonging to either Firmicutes or Actinobacteria phylum were dominant depending on the sampling area. Nevertheless, the proportion of the calcifying Bacillus, Brachybacterium, Microbacterium, and Rhodococcus genera changed. These bacterial strains were likely to participate in the effectiveness of the biotreatment. Isolated bacteria of Microbacterium and Rhodococcus genera reported interesting calcifying capacity associated to microbial growth rates greater than the one observed for Alkalihalobacillus pseudofirmus. A bacterial consortium containing Alkalihalobacillus pseudofirmus, Rhodococcus cercidiphylli, and Microbacterium schleiferi demonstrated an improved calcifying capacity. Consequently, using a bacterial consortium instead of a single strain is an efficient way to improve the robustness of the biorepair treatment. KEY POINTS: • Indigenous calcifying bacteria mainly belonged to Firmicutes and Actinobacteria • Microbacterium and Rhodococcus reported the quickest growth rate with calcium lactate • A bacterial consortium with improved calcifying capacity is proposed.


Asunto(s)
Bacterias , Lactatos , ARN Ribosómico 16S/genética , Filogenia , Bacterias/genética , Firmicutes/genética
2.
Appl Microbiol Biotechnol ; 100(7): 2993-3007, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896159

RESUMEN

The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.


Asunto(s)
Bacillus megaterium/metabolismo , Bacillus/metabolismo , Carbonato de Calcio/química , Materiales de Construcción/microbiología , Sporosarcina/metabolismo , Bacillus/química , Bacillus megaterium/química , Carbonato de Calcio/metabolismo , Precipitación Química , Dureza , Ensayo de Materiales , Redes y Vías Metabólicas/fisiología , Sporosarcina/química , Propiedades de Superficie
3.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274792

RESUMEN

In this study, a self-healing epoxy asphalt material was developed by incorporating coumarin groups. This material achieved microcrack self-repair under UV irradiation at 50 °C. Fluorescence microscopy observations and mechanical performance tests demonstrated significant advantages in crack filling and mechanical property recovery after repair, with the fracture toughness of the repaired epoxy asphalt reaching 69% of that in its original state. Furthermore, the synergistic effect of temperature and UV irradiation in the self-healing process enhanced the material's durability and service life. This research offers new insights and methods for developing more durable and long-lasting self-healing asphalt materials, showcasing the great potential of smart materials in infrastructure applications.

4.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998288

RESUMEN

A low-carbon and environmentally friendly EICP method for repairing concrete cracks is presented to prolong the service life of concrete. In this study, we took concrete as the research object and quartz sand as the filling medium and employed the EICP injection method to repair concrete cracks. The internal repair effect of EICP on concrete cracks was evaluated with a combination of ultrasonic and compressive strength tests. The concrete repair mechanism of EICP was identified with a combination of EDS, XRD, and SEM tests. The results indicate that with an increase in the fracture depth, the ultrasonic sound time of the crack specimen increased gradually, and the ultrasonic wave transit time value of the crack specimen decreased significantly after EICP repair. After repair, the compressive strength rose. The highest compressive-strength recovery rate of a 0.3 mm wide specimen is 98.41%. The calcium carbonate crystal formed using EICP is vaterite. The probability density function model of the Laplace distribution was constructed, which showed good applicability and consistency in the ultrasonic sound time and compressive strength measured via experiments. The formed calcium carbonate crystals can be tightly and evenly attached to the cracks with the EICP injection repair method, resulting in a better repair effect.

5.
Heliyon ; 10(11): e32166, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912447

RESUMEN

This study addressed the critical problem of repairing cracks in aging aircraft structures, a safety concern of paramount importance given the extended service life of modern fleets. Utilized a finite element (FE) method enhanced by the design of experiments (DOE) and adaptive neuro-fuzzy inference system (ANFIS) approaches to analyze the efficacy of piezoelectric actuators in mitigating stress intensity factors (SIF) at crack tips-a novel integration in structural repair strategies. Through simulations, we examined the impact of various factors on the repair process, including the plate, actuator, and adhesive bond size and characteristics. In this work, initially, the SIF estimation used the FE approach at crack tips in aluminum 2024-T3 plate under the uniform uniaxial tensile load. Next, numerous simulations have been performed by changing the parameters and their levels to collect the data information for the analysis of the DOE and ANFIS approach. The FE simulation results have shown that changing the parameters and their levels will result in changing of SIF. Several DOE and ANFIS optimization cases have been performed for the depth analysis of parameters. The current results indicated that optimal placement, size, and voltage applied to the piezoelectric actuators are crucial for maximizing crack repair efficiency, with the ability to significantly reduce the SIF by a quantified percentage under specific conditions. This research surpasses previous efforts by providing a comprehensive parameter optimization of piezoelectric actuator application, offering a methodologically advanced and practically relevant pathway to enhance aircraft structural integrity and maintenance practices. The study innovation lies in its methodological fusion, which holistically examines the parameters influencing SIF reduction in aircraft crack repair, marking a significant leap in applying intelligent materials in aerospace engineering.

6.
Sci Total Environ ; 802: 149841, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455282

RESUMEN

Biocalcification is a natural biochemical process, which has been regarded as a promising method for sequestering heavy metals or carbon dioxide in the environment, healing cracks in concrete structures, and stabilizing soil. One of the key factors in this process is calcium carbonate-producing bacteria. The purpose of this study was to maximize the production of calcium carbonate by alkaliphilic Bacillus psychrodurans LC40 isolated from a limestone cave, by manipulating the medium composition for fast and non-detrimental crack healing, and to investigate the mechanism of its production. Strain LC40 could grow well in the strongly alkaline region (pH 9.5-11), indicating its alkaliphilic nature. The optimal medium for calcium carbonate production contained 2% tryptone, 1.5% urea, 0.15% NaHCO3, and 150 mM calcium formate (pH 6). Using this medium, the yield of calcium carbonate at 72 h was approximately 8.6-fold higher than that obtained through Urea-CaCl2 medium. In this culture, the urease and carbonic anhydrase activities were observed simultaneously, and the pH of the medium was found to have increased to 9.4, leading to maximum calcium carbonate production. This suggests that this pH value is achieved by the synergistic action of the two enzymes, resulting in a high calcium carbonate yield. The crystals were characterized by FESEM, EDS and XRD, which confirmed the production of rhombohedral and spherical calcium carbonate crystals containing vaterite and calcite. Strain LC40 completely healed a 0.75 mm wide crack in a very short time of 3 days using the optimized medium as a cementation solution. Our findings indicate that B. psychrodurans LC40 could be a promising candidate for the development of eco-friendly biosealant applicable to environmentally stressed concrete structures.


Asunto(s)
Bacillaceae , Bacillus , Carbonato de Calcio , Materiales de Construcción , Ureasa
7.
Materials (Basel) ; 15(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35591601

RESUMEN

The number of aged bridges among concrete structures is increasing. Therefore, to increase their lifespans, repair and reinforcement schemes ought to be implemented. This study selected various repair materials according to crack-surface treatment, crack-filling, and crack-injection methods. These repair materials were evaluated using various test methods proposed by the Korean Standards and the American Society for Testing and Materials for structure protection, structure restoration, and crack repair; the results were analyzed and compared. Consequently, the structure restoration material exhibited a similar freezing-thawing trend as that of chloride, while also exhibiting similar flexural, compressive, bond, and splitting-tensile strengths. However, chloride yielded performance differences (up to two-fold) depending on the type of material used for comparison. The crack-repair material yielded similar trends only for bond strength but yielded differences (up to 2-4-fold) in tensile, compressive, and flexural strengths depending on the material used for comparison. These results confirmed that crack-repair materials exhibit significant differences in performance depending on the manufacturer compared with structure protection and structure restoration materials. Therefore, it is expected that repair materials appropriate for usability, durability, and structure safety, while also being environmentally friendly, could be used in future bridge repairs based on these test evaluations.

8.
Materials (Basel) ; 14(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34639919

RESUMEN

The research reported in this paper aims to evaluate the epoxy injection technique used to strengthen fiber-reinforced self-compacting concrete (FRSCC) with high strength. This method is carried out on ruptured concrete specimens to assess the efficiency of the epoxy resin adhesive injection retrofitting technique for strength and stiffness. Five FRSCC mixes were designed and placed using different types (steel and polypropylene) and contents (0%, 0.25%, and 0.45% by volume) of fibers. The fresh and mechanical properties in addition to the microstructure of produced mixes were evaluated to assess the impact of fibers on the behavior of FRSCC. Results showed that the workability of FRSCC is reduced by increasing steel or polypropylene fiber content; however, the rheological characteristics of placed mixes satisfied the European Guidelines for Self-Compacting Concrete recommendation for fresh concrete. Also, splitting tensile, flexural, and shear strengths were enhanced by increasing fiber content. The simultaneous application of epoxy injection in FRSCC for repairing damaged concrete beams was shown to be highly effective.

9.
Arch Oral Biol ; 109: 104573, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31568993

RESUMEN

OBJECTIVE: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts. DESIGN: Bovine enamel fragments were prepared and optical microscopy and atomic force microscopy were used to establish microstructure; Raman spectroscopy was used to estimate composition and microindentation using Vickers testing was performed to evaluate hardness. RESULTS: A strong dependence between indentation load and microhardness values was observed, as was the case in human enamel. Similar microstructure and chemical composition between bovine and human enamel, 7.89% lower microhardness and 40% higher fracture toughness values for bovine enamel were found. CONCLUSION: From a structural and mechanical standpoint, bovine enamel is a suitable alternative to human enamel for in vitro testing of dental products.


Asunto(s)
Esmalte Dental/química , Dureza , Animales , Bovinos , Microscopía de Fuerza Atómica
10.
Adv Biochem Eng Biotechnol ; 172: 293-342, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31041481

RESUMEN

Concrete is one of the most commonly used building materials ever used. Despite it is a very important and common construction material, concrete is very sensitive to crack formation and requires repair. A variety of chemical-based techniques and materials have been developed to repair concrete cracks. Although the use of these chemical-based repair systems are the best commercially available choices, there have also been concerns related to their use. These repair agents suffer from inefficiency and unsustainability. Most of the products are expensive and susceptible to degradation, exhibit poor bonding to the cracked concrete surfaces, and are characterized by different physical properties such as thermal expansion coefficients which are different to that of concrete. Moreover, many of these repair agents contain chemicals that pose environmental and health hazards. Thus, there has been interest in developing concrete crack repair agents that are efficient, long lasting, safe, and benign to the environment and exhibit physical properties which resemble that of the concrete. The search initiated by these desires brought the use of biomineralization processes as tools in mending concrete cracks. Among biomineralization processes, microbially initiated calcite precipitation has emerged as an interesting alternative to the existing chemical-based concrete crack repairing system. Indeed, results of several studies on the use of microbial-based concrete repair agents revealed the remarkable potential of this approach in the fight against concrete deterioration. In addition to repairing existing concrete cracks, microorganisms have also been considered to make protective surface coating (biodeposition) on concrete structures and in making self-healing concrete.Even though a wide variety of microorganisms can precipitate calcite, the nature of concrete determines their applicability. One of the important factors that determine the applicability of microbes in concrete is pH. Concrete is highly alkaline in nature, and hence the microbes envisioned for this application are alkaliphilic or alkali-tolerant. This work reviews the available information on applications of microbes in concrete: repairing existing cracks, biodeposition, and self-healing. Moreover, an effort is made to discuss biomineralization processes that are relevant to extend the durability of concrete structures. Graphical Abstract.


Asunto(s)
Carbonato de Calcio , Materiales de Construcción , Bacterias
11.
Materials (Basel) ; 12(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817964

RESUMEN

At present, the commonly used repair materials for concrete cracks mainly include epoxy systems and acrylic resins, which are all environmentally unfriendly materials, and the difference in drying shrinkage and thermal expansion often causes delamination or cracking between the original concrete matrix and the repair material. This study aimed to explore the feasibility of using microbial techniques to repair concrete cracks. The bacteria used were environmentally friendly Bacillus pasteurii. In particular, the use of lightweight aggregates as bacterial carriers in concrete can increase the chance of bacterial survival. Once the external environment meets the growth conditions of the bacteria, the vitality of the strain can be restored. Such a system can greatly improve the feasibility and success rate of bacterial mineralization in concrete. The test project included the microscopic testing of concrete crack repair, mainly to understand the crack repair effect of lightweight aggregate concrete with implanted bacterial strains, and an XRD test to confirm that the repair material was produced by the bacteria. The results show that the implanted bacterial strains can undergo Microbiologically Induced Calcium Carbonate Precipitation (MICP) and can effectively fill the cracks caused by external concrete forces by calcium carbonate deposition. According to the results on the crack profile and crack thickness, the calcium carbonate precipitate produced by the action of Bacillus pasteurii is formed by the interface between the aggregate and the cement paste, and it spreads over the entire fracture surface and then accumulates to a certain thickness to form a crack repairing effect. The analysis results of the XRD test also clearly confirm that the white crystal formed in the concrete crack is calcium carbonate. From the above test results, it is indeed feasible to use Bacillus pasteurii in the self-healing of concrete cracks.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda