RESUMEN
The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.
Asunto(s)
Aclarubicina , Antraciclinas , Leucemia Mieloide Aguda , Animales , Femenino , Humanos , Masculino , Aclarubicina/farmacología , Aclarubicina/uso terapéutico , Antraciclinas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Resultado del TratamientoRESUMEN
Klebsiella pneumoniae carbapenemase (KPC) variants have been described that confer resistance to both ceftazidime-avibactam and cefiderocol. Of these, KPC-33 and KPC-31 are D179Y-containing variants derived from KPC-2 and KPC-3, respectively. To better understand this atypical phenotype, the catalytic mechanism of ceftazidime and cefiderocol hydrolysis by KPC-33 and KPC-31 as well as the ancestral KPC-2 and KPC-3 enzymes was studied. Steady-state kinetics showed that the D179Y substitution in either KPC-2 or KPC-3 is associated with a large decrease in both kcat and KM such that kcat/KM values were largely unchanged for both ceftazidime and cefiderocol substrates. A decrease in both kcat and KM is consistent with a decreased and rate-limiting deacylation step. We explored this hypothesis by performing pre-steady-state kinetics and showed that the acylation step is rate-limiting for KPC-2 and KPC-3 for both ceftazidime and cefiderocol hydrolysis. In contrast, we observed a burst of acyl-enzyme formation followed by a slow steady-state rate for the D179Y variants of KPC-2 and KPC-3 with either ceftazidime or cefiderocol, indicating that deacylation of the covalent intermediate is the rate-limiting step for catalysis. Finally, we show that the low KM value for ceftazidime or cefiderocol hydrolysis of the D179Y variants is not an indication of tight binding affinity for the substrates but rather is a reflection of the deacylation reaction becoming rate-limiting. Thus, the hydrolysis mechanism of ceftazidime and cefiderocol by the D179Y variants is very similar and involves the formation of a long-lived covalent intermediate that is associated with resistance to the drugs.
Asunto(s)
Antibacterianos , Ceftazidima , Ceftazidima/farmacología , Ceftazidima/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Cefiderocol , Klebsiella pneumoniae , Hidrólisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Combinación de Medicamentos , Compuestos de Azabiciclo/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.
Asunto(s)
Proteínas Portadoras , Mycobacterium tuberculosis , ATPasas Tipo P , Mycobacterium tuberculosis/genética , Levofloxacino , Norfloxacino , Antibacterianos/farmacología , OxacilinaRESUMEN
BACKGROUND: Fusarium crown rot (FCR) is one of the most significant diseases limiting crop production in the Huanghuai wheat-growing region of China. Prothioconazole, a triazole sterol 14α-demethylation inhibitor (DMI) fungicide developed by the Bayer Crop Protection Company, is mainly registered for the prevention and control of wheat powdery mildew and stripe rust (China Pesticide Information Network). It is known to exhibit high activity against F. pseudograminearum, but further research, particularly regarding the potential for fungicide resistance, is required before it can be registered for the control of FCR in China. RESULTS: The current study found that the baseline sensitivity of 67 field isolates of F. pseudograminearum collected between 2019 and 2021 ranged between 0.016-2.974 µg/mL, with an average EC50 value of 1.191 ± 0.720 µg/mL (mean ± SD). Although none of the field isolates exhibited signs of resistance, three highly resistant mutants were produced by repeated exposure to prothioconazole under laboratory conditions. All of the mutants were found to exhibit significantly reduced growth rates on potato dextrose agar (PDA), as well as reduced levels of sporulation, which indicated that there was a fitness cost associated with the resistance. However, inoculation of wounded wheat coleoptiles revealed that the pathogenicity of the resistant mutants was little affected or actually increased. Molecular analysis of the genes corresponding to the prothioconazole target protein, FpCYP51 (FpCYP51A, FpCYP51B, and FpCYP51C), indicated that the resistant mutants contained three conserved substitutions (M63I, A205S, and I246V) that were present in the FpCYP51C sequence of all three mutants, as well as several non-conserved substations in their FpCYP51A and FpCYP51B sequences. Expression analysis revealed that the presence of prothioconazole (0.1 µg/mL) generally resulted in reduced expression of the three FpCYP51 genes, but that the three mutants exhibited more complex patterns of expression that differed in comparison to their parental isolates. The study found no evidence of cross-resistance between prothioconazole and any of the fungicides tested including three DMI fungicides tebuconazole, prochloraz, and flutriafol. CONCLUSIONS: Taken together these results not only provide new insight into the resistant mechanism and biological characteristics associated with prothioconazole resistance in F. pseudograminearum, but also strong evidence that prothioconazole could provide effective and sustained control of FCR, especially when applied in combination with other fungicides.
Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Triazoles/farmacología , China , Enfermedades de las Plantas/genéticaRESUMEN
BACKGROUND: The Fusarium head blight caused by Fusarium graminearum results in reduced crop yields and the potential for vomitoxin contamination, which poses a risk to both human and livestock health. The primary method of control relies on the application of chemical fungicides. RESULTS: The current study found that the tebuconazole sensitivity of 165 F. graminearum isolates collected from the Huang-Huai-Hai region of China between 2019 and 2023 ranged from 0.005 to 2.029 µg/mL, with an average EC50 value of 0.33 ± 0.03 µg/mL. The frequency distribution conformed to a unimodal curve around the mean, and therefore provides a useful reference for monitoring the emergence of tebuconazole resistance in field populations of F. graminearum. No cross-resistance was detected between tebuconazole and other unrelated fungicides such as flutriafol, propiconazole and fluazinam, but there was a clear negative cross-resistance with triazole fungicides including fludioxonil, epoxiconazole, hexaconazole, and metconazole. Analysis of five tebuconazole-resistant mutants produced under laboratory conditions indicated that although the mycelial growth of the mutants were significantly (p < 0.05) reduced, spore production and germination rates could be significantly (p < 0.05) increased. However, pathogenicity tests confirmed a severe fitness cost associated with tebuconazole resistance, as all of the mutants completely loss the ability to infect host tissue. Furthermore, in general the resistant mutants were found to have increased sensitivity to abiotic stress, such as ionic and osmotic stress, though not to Congo red and oxidative stress, to which they were more tolerant. Meanwhile, molecular analysis identified several point mutations in the CYP51 genes of the mutants, which resulted in two substitutions (I281T, and T314A) in the predicted sequence of the FgCYP51A subunit, as well as seven (S195F, Q332V, V333L, L334G, M399T, E507G, and E267G) in the FgCYP51C subunit. In addition, it was also noted that the expression of the CYP51 genes in one of the mutants, which lacked point mutations, was significantly up-regulated in response to tebuconazole treatment. CONCLUSIONS: These results provide useful data that allow for more rational use of tebuconazole in the control of F. graminearum, as well as for more effective monitoring of fungicide resistance in the field.
Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales , Fusarium , Triazoles , Triazoles/farmacología , Fusarium/efectos de los fármacos , Fusarium/fisiología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , China , MutaciónRESUMEN
Emergence of genetic variants with increased resistance/tolerance to natural antimicrobials, such as essential oils, has been previously evidenced; however, it is unknown whether mutagenesis follows a general or a specific pattern. For this purpose, we carried out four adaptive laboratory evolutions (ALE) in parallel of Salmonella enterica Typhimurium with carvacrol. After 10 evolution steps, we selected and characterized one colony from each lineage (SeCarA, SeCarB, SeCarC, and SeCarD). Phenotypic characterization of the four evolved strains revealed enhanced survival to lethal treatments; two of them (SeCarA and SeCarB) showed an increase of minimum inhibitory concentration of carvacrol and a better growth fitness in the presence of carvacrol compared to wild-type strain. Whole genome sequencing revealed 10 mutations, of which four (rrsH, sseG, wbaV, and flhA) were present in more than one strain, whereas six (nirC, fliH, lon, rob, upstream yfhP, and upstream argR) were unique to individual strains. Single-mutation genetic constructs in SeWT confirmed lon and rob as responsible for the increased resistance to carvacrol as well as to antibiotics (ampicillin, ciprofloxacin, chloramphenicol, nalidixic acid, rifampicin, tetracycline, and trimethoprim). wbaV played an important role in increased tolerance against carvacrol and chloramphenicol, and flhA in cross-tolerance to heat treatments. As a conclusion, no common phenotypical or genotypical pattern was observed in the isolated resistant variants of Salmonella Typhimurium emerged under carvacrol stress. Furthermore, the demonstration of cross-resistance against heat and antibiotics exhibited by resistant variants raises concerns regarding food safety. KEY POINTS: ⢠Stable resistant variants of Salmonella Typhimurium emerged under carvacrol stress ⢠No common pattern of mutagenesis after cyclic exposures to carvacrol was observed ⢠Resistant variants to carvacrol showed cross-resistance to heat and to antibiotics.
Asunto(s)
Antibacterianos , Salmonella typhimurium , Salmonella typhimurium/genética , Antibacterianos/farmacología , Cloranfenicol , CimenosRESUMEN
Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 µg/mL, and an average EC50 value of 1.1005 ± 0.3727 µg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.
Asunto(s)
Sustitución de Aminoácidos , Farmacorresistencia Fúngica , Fungicidas Industriales , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Mutación Puntual , Oryza/microbiología , AscomicetosRESUMEN
Japanese brome (Bromus japonicus) has become one of the main weeds in wheat fields in Hebei province of China and causes a large decrease of wheat production. A total of 44 putative resistant and 2 susceptible Japanese brome populations were collected in the 2021/2022 crop season from Hebei province of China to determine resistance levels to flucarbazonesodium and to investigate the diversity of acetolactate synthase (ALS) mutations, as well as to confirm the cross-and multiple-resistance levels to ALS and EPSPS (5-enolpyruvate shikimate-3-phosphate synthetase) inhibitors. Whole plant bioassay results showed that 15 out of 44 populations tested or 34% were resistant to flucarbazonesodium. The resistance indices of Japanese brome to flucarbazonesodium ranged from 43 to 1977. The resistant populations were mainly distributed in Baoding and Shijiazhuang districts, and there was only one resistant population in Langfang district. Resistant Japanese brome had diverse ALS mutations, including Pro-197-Ser, -Thr, -Arg and Asp-376-Glu. The incidence of Pro-197-Ser mutation was the highest at 68%. Application of the CYP450 inhibitor malathion suggested that CYP450 was involved in metabolic resistance in a population without an ALS mutation. The population with Pro-197-Thr mutation evolved weak cross-resistance to mesosulfuron-methyl and pyroxsulam, and it is in the process of evolving multiple-resistance to glyphosate.
Asunto(s)
Acetolactato Sintasa , Herbicidas , Sulfonamidas , Triazoles , Bromus/metabolismo , Herbicidas/farmacología , Mutación , China , Resistencia a los Herbicidas/genética , Acetolactato Sintasa/metabolismoRESUMEN
Lambda-cyhalothrin, a representative pyrethroid insecticide widely used for Spodoptera frugiperda control in China, poses challenges due to the development of resistance. This study investigates the realized heritability, inheritance pattern, cross-resistance, and resistance mechanisms to lambda-cyhalothrin. After 21 generations of selection, the lambda-cyhalothrin-resistant strain (G21) developed a 171.11-fold resistance compared to a relatively susceptible strain (RS-G9), with a realized heritability (h2) of 0.11. Cross-resistance assays revealed that lambda-cyhalothrin-resistant strains showed no significant cross-resistance to the majority of tested insecticides. Genetic analysis indicated that lambda-cyhalothrin resistance in S. frugiperda was autosomal, incompletely dominant, and polygenic inheritance. The P450 enzyme inhibitor PBO significantly enhanced lambda-cyhalothrin toxicity in the resistant strains. Compared with the RS-G9 strain, the P450 enzyme activity was significantly increased and multiple P450 genes were significantly up-regulated in the lambda-cyhalothrin-resistant strains. RNAi targeting the most overexpressed P450 genes (CYP337B5 and CYP321B1) significantly increased the susceptibility of resistant S. frugiperda larvae to lambda-cyhalothrin. This study provides comprehensive insights into lambda-cyhalothrin resistance in S. frugiperda, and the results are helpful for developing effective resistance management strategies of this pest.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Nitrilos , Piretrinas , Spodoptera , Animales , Piretrinas/farmacología , Nitrilos/farmacología , Spodoptera/efectos de los fármacos , Spodoptera/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interferencia de ARN , Larva/efectos de los fármacos , Larva/genéticaRESUMEN
Tuta absoluta is one of the most destructive and invasive insect pests throughout the world. It feeds on numerous solanaceous plant species and has developed resistance to most types of popular insecticides. Tetraniliprole is a novel diamide chemical agent that acts as a modulator of the ryanodine receptor. To establish T. absoluta susceptibility to tetraniliprole and to understand potential mechanisms of resistance, we monitored 18 field populations of T. absoluta collected from northern China. One field-evolved resistant population, Huailai (HL), showed moderate resistance to tetraniliprole (36.2-fold) in comparison with susceptible strain YN-S. Assays of cross-resistance, synergism, metabolic enzyme activity, and inheritance of resistance were performed with YN-S strain and HL population. The latter displayed 12.2- and 6.7-fold cross-resistance to chlorantraniliprole and flubendiamide, respectively, but little cross-resistance to broflanilide (1.6-fold), spinosad (2.1-fold), metaflumizone (1.5-fold), or indoxacarb (2.8-fold). Genetic analyses revealed that tetraniliprole resistance in HL population was autosomal, incompletely dominant, and polygenic. Piperonyl butoxide was found to significantly increase tetraniliprole toxicity, and enzymatic activities of P450 monooxygenase and glutathione S-transferase were significantly higher in HL than YN-S population. These results enhance our knowledge of the inheritance and mechanism of tetraniliprole resistance, enabling future optimization of resistance management strategies.
Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Mariposas Nocturnas , Animales , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , China , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Larva/efectos de los fármacos , Larva/genéticaRESUMEN
The tomato pinworm, Phthorimaea (=Tuta) absoluta, is considered one of the most destructive and invasive insect pests worldwide, having developed significant resistance to many popular insecticides. In this study, we monitored the field resistance of P. absoluta populations from China to three diamide insecticides: flubendiamide, chlorantraniliprole, and cyantraniliprole. We found that one field population from Wuzhong City (WZ) exhibited high level of resistance to chlorantraniliprole. Using the WZ population and a susceptible reference strain (YN-S), we established a near-isogenic line (WZ-NIL) of P. absoluta with resistance to chlorantraniliprole. This strain also showed substantial cross-resistance to flubendiamide, and cyantraniliprole. Genetic analysis revealed that the inheritance of resistance to chlorantraniliprole in the WZ-NIL strain was autosomal and incompletely dominant. Additionally, the pesticide synergist piperonyl butoxide significantly inhibited chlorantraniliprole resistance by compromising P450 monooxygenase activity, which was significantly higher in the resistant strain. Furthermore, WZ-NIL had significantly prolonged developmental stages, lower pupation rates, reduced female fecundity, and lower egg hatchability than YN-S individuals. The fitness of WZ-NIL relative to YN-S was estimated to be 0.73, indicating significant fitness cost associated with chlorantraniliprole resistance. Rotating chlorantraniliprole with other insecticides that have different modes of action and degradation may be particularly useful for managing chlorantraniliprole resistance in P. absoluta.
Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Mariposas Nocturnas , ortoaminobenzoatos , Animales , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Pirazoles/farmacología , Butóxido de Piperonilo/farmacología , China , Solanum lycopersicum/efectos de los fármacos , Benzamidas/farmacología , Larva/efectos de los fármacos , Sulfonas/farmacología , Femenino , Diamida/farmacología , Masculino , Pueblos del Este de Asia , Fluorocarburos , FtalimidasRESUMEN
Cyclobutrifluram (TYMIRIUM® technology), a new succinate dehydrogenase inhibitor (SDHI) fungicide, is currently being registered by SYNGENTA for controlling Fusarium crown rot (FCR) of wheat in China. The application of 15 or 30 g of active ingredient/100 kg seed of cyclobutrifluram significantly reduced pre-emergence damping-off, discoloration on the stem base and formation of whiteheads caused by FCR. The EC50 values of cyclobutrifluram for 60 isolates of F. pseudograminearum, 30 isolates of F. asiaticum and 30 isolates of F. graminearum ranged from 0.016 to 0.142 mg L-1, 0.010 to 0.041 mg L-1 and 0.012 to 0.059 mg L-1, respectively. One hundred and seven cyclobutrifluram-resistant (CR) mutants were obtained from three Fusarium species isolates, with ten types of mutations identified in Sdh genes. Three Fusarium species isolates exhibited similar resistance mechanisms, with the most prevalent mutations, SdhC1A83V and SdhC1R86K, accounting for 61.68% of mutants. The CR mutants possessed comparable or slightly impaired fitness compared to the corresponding parental isolates. The CR mutants carrying FpSdhBH248Y/Q/D exhibited increased sensitivity to fluopyram. An overall moderate risk of resistance development in three Fusarium species was recommended for cyclobutrifluram.
Asunto(s)
Fusarium , Fusarium/genética , Triticum , Enfermedades de las Plantas/prevención & control , Mutación , Ácido SuccínicoRESUMEN
Decreased cuticular penetration has been documented as a mechanism of resistance in several insects, yet this mechanism remains poorly understood. Levels of resistance conferred, effects of the physicochemical properties on the manifestation of resistance and the effects of different routes of exposure are largely unknown. We recently selected a strain (FlurR) of house fly that was >11,000-fold resistance to fluralaner, and decreased cuticular penetration was one of the mechanisms of resistance (Norris et al., 2023). We sought to isolate the decreased penetration mechanism from FlurR into the background of the susceptible aabys strain, and to characterize the protection it conferred to fluralaner and other insecticides. We successfully isolated the decreased penetration mechanism and found that it conferred 7.1-fold resistance to fluralaner, and 1.4- to 4.9-fold cross-resistance to five other insecticides by topical application. Neither mass, metabolic lability, vapor pressure, nor logP explained the differences in the resistance ratios. The mechanism also conferred cross resistance by residual and feeding exposure, although at reduced levels compared to topical application. Remaining data gaps in our understanding of this mechanism are discussed.
Asunto(s)
Moscas Domésticas , Resistencia a los Insecticidas , Insecticidas , Isoxazoles , Moscas Domésticas/efectos de los fármacos , Animales , Insecticidas/farmacología , Isoxazoles/farmacologíaRESUMEN
Eriochloa villosa (Thunb.) Kunth is a troublesome weed widely distributed in maize (Zea mays L.) fields in Northeast China. Many populations of E. villosa have evolved resistance to nicosulfuron herbicides, which inhibit acetolactate synthase (ALS). The objectives of this research were to confirm that E. villosa is resistant to nicosulfuron and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response studies revealed that the R population had not developed a high level of cross-resistance and exhibited greater resistant (25.62-fold) to nicosulfuron than that of the S population and had not yet developed a high level of cross-resistance. An in vitro ALS activity assay demonstrated that the I50 of nicosulfuron was 6.87-fold greater in the R population than the S population. However, based on ALS gene sequencing, the target ALS gene in the R population did not contain mutations. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that ALS gene expression between the R and S populations was significantly different after nicosulfuron application, but no differences were observed in the gene copy number. After the cytochrome P450 inhibitor malathion or the GST inhibitor NBD-Cl was applied, the resistant E. villosa population exhibited increased sensitivity to nicosulfuron. Based on the activities of GSTs and P450s, the activities of the R population were greater than those of the S population after nicosulfuron application. This is the first report that the resistance of E. villosa to ALS inhibitors results from increased target gene expression and increased metabolism. These findings provide a theoretical foundation for the effective control of herbicide-resistant E. villosa.
Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Piridinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Poaceae/genética , Poaceae/efectos de los fármacosRESUMEN
The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 µg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.
Asunto(s)
Botrytis , Dioxoles , Fungicidas Industriales , Enfermedades de las Plantas , Pirroles , Vitis , Botrytis/efectos de los fármacos , Botrytis/genética , Chile , Fungicidas Industriales/farmacología , Pirroles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Dioxoles/farmacología , Vitis/microbiología , Farmacorresistencia Fúngica/genéticaRESUMEN
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, disease control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 µg/ml, with an average EC50 value of 0.78 µg/ml. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth and pathogenicity were reduced compared with their parental isolates and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS and H2O2, while their tolerance to high concentrations of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G, and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (P < 0.05) reduced compared with their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.
Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales , Fusarium , Enfermedades de las Plantas , Triazoles , Triticum , Fusarium/genética , Fusarium/efectos de los fármacos , Fusarium/fisiología , Triazoles/farmacología , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , MutaciónRESUMEN
Alternaria species are fungal pathogens that can infect maize, causing leaf blight disease and significant economic losses. This study aimed to determine the baseline sensitivity to prochloraz of A. alternata isolates obtained from diseased maize leaves collected from Heilongjiang Province by assessing the half-maximal effective concentration (EC50) values. The EC50 values of prochloraz ranged from 0.0550 to 2.3258 µg/ml, with an average of 0.9995 ± 0.5192 µg/ml. At EC50 (1.2495 µg/ml) and 2EC50 (2.4990 µg/ml), prochloraz increased the number of mycelial offshoots, disrupted the cell membrane integrity of conidia and mycelia, and resulted in a reduced ergosterol content in the mycelia. Prochloraz significantly affected the mycelial cell membrane permeability and increased the malondialdehyde content and superoxide dismutase activity. No cross-resistance was detected between prochloraz and other fungicides. These data demonstrate that prochloraz is a promising fungicide for managing maize leaf blight caused by A. alternata and provide novel insights into understanding the mechanism of prochloraz toxicity against A. alternata isolates.
RESUMEN
The gray mold (Botrytis cinerea; Botrytis) is the main disease affecting grapevines production in Chile. Succinate Dehydrogenase Inhibitors (SDHI) belonging to the carboxamides fungicide family are a key tool for the control of Botrytis in grapevines from Chilean Central Valley. This study aimed to determine the sensitivity of Chilean Botrytis population to the new generation carboxamide pydiflumetofen. Conidial germination (CG) and germ-tube elongation (GTE) sensitivity assays were conducted on 200 single-spore isolates collected during the 2016-2017 season. The mean effective concentration that inhibited 50% (EC50) of CG in the Botrytis population was 0.0545 µg/mL, with mean values of 0.066 µg/mL and 0.042 µg/mL, for table and wine grapes, respectively. The mean EC50 value of GTE was 0.000245 µg/mL, 0.0003 µg/mL, and 0.0019 µg/mL for the total, table grape, and wine grape populations, respectively. The comparison between pydiflumetofen and fludioxonil, a highly-efficient fungicide carrying a different mode of action, showed the 87.5% and 97.5% of Botrytis control with an EC50 threshold of 0.1 µg/mL, in table grape, and wine grape populations, respectively. No cross-resistance between pydiflumetofen and fludioxonil was detected. For nine isolates with reduced pydiflumetofen sensitivity, we evaluated SdhB mutations using a qPCR-HRM diagnostic system. Two isolates carried the sdhBP225/H272R genotype and two the sdhBP225/H272Y. Additional analysis of SdhB mutant isolates determined that pydiflumetofen controls wild-type as well as sdhBP225/H272R and sdhBP225H/H272 mutants. Pydiflumetofen does not control CG in the sdhBP225/H272Y mutant but is effective in the GTE control. Pydiflumetofen significantly controls Botrytis independently of the SdhB genotype in wounded berry assays. This condition resembles the berry cracking due to heavy rainfall right before harvest, as seen in recent years in the Chilean Central Valley. The findings demonstrate that pydiflumetofen effectively controls the grapevine Botrytis population, suggest a moderate risk of pydiflumetofen resistance, and highlight the significance of incorporating genetic data into the design of control programs.
RESUMEN
Microbes live within complex communities of interacting populations, either free-living in waters and soils or symbionts of animals and plants. Their interactions include the production of antimicrobial peptides (bacteriocins) to antagonize competitors, and these producers must carry their own immunity gene for self-protection. Whether other coexisting populations are sensitive or resistant to the bacteriocin producer will be key for the population dynamics within the microbial community. The immunity gene frequently consists of an ABC transporter to repel its own bacteriocin but rarely protects against a nonrelated bacteriocin. A case where this cross-resistance occurs mediated by a shared ABC transporter has been shown between enterocins MR10A/B and AS-48. The first is an L50-like leaderless enterocin, while AS-48 is a circular enterocin. In addition, L50-like enterocins such as MR10A/B have been found in E. faecalis and E. faecium, but AS-48 appears only in E. faecalis. Thus, using the ABC transporter of the enterocin MR10A/B gene cluster of Enterococcus faecalis MRR10-3 as a cross-resistance model, we aimed to unravel to what extent a particular ABC transporter can be shared across multiple bacteriocinogenic bacterial populations. To this end, we screened the MR10A/B-ABC transporters in available microbial genomes and analyzed their sequence homologies and distribution. Overall, our main findings are as follows: (i) the MR10A/B-ABC transporter is associated with multiple enterocin gene clusters; (ii) the different enterocins associated with this transporter have a saposin-like fold in common; (iii) the Mr10E component of the transporter is more conserved within its associated enterocin, while the Mr10FGH components are more conserved within the carrying species. This is the least known component of the transporter, but it has shown the greatest specificity to its corresponding enterocin. Bacteriocins are now being investigated as an alternative to antibiotics; hence, the wider or narrower distribution of the particular immunity gene should be taken into account for clinical applications to avoid the selection of resistant strains. Further research will be needed to investigate the mechanistic interactions between the Mr10E transporter component and the bacteriocin as well as the specific ecological and evolutionary mechanisms involved in the spread of the immunity transporter across multiple bacteriocins.
Asunto(s)
Bacteriocinas , Enterococcus faecium , Animales , Enterococcus faecium/genética , Transportadoras de Casetes de Unión a ATP/genética , AntibacterianosRESUMEN
Phosphine is the most widely used fumigant for stored grains due to a lack of better alternatives, all of which have serious shortcomings that restrict their use. The extensive use of phosphine has led to the development of resistance among insect pests of grain, which threatens its status as a reliable fumigant. Understanding the mode of action of phosphine as well as its resistance mechanisms provides insight that may lead to improved phosphine efficacy and pest control strategies. The mechanisms of action in phosphine vary from disrupting metabolism and oxidative stress to neurotoxicity. Phosphine resistance is genetically inherited and is mediated by the mitochondrial dihydrolipoamide dehydrogenase complex. In this regard, laboratory studies have revealed treatments that synergistically enhance phosphine toxicity that may be used to suppress resistance development and enhance efficacy. Here, we discuss the reported phosphine modes of action, mechanisms of resistance and interactions with other treatments.