Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Genes Dev ; 38(5-6): 213-232, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503516

RESUMEN

Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Síntesis Translesional de ADN , Helicasa del Síndrome de Werner , Humanos , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/metabolismo , Síntesis Translesional de ADN/genética , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo
2.
Mol Cell ; 83(20): 3608-3621, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37625405

RESUMEN

Translesion synthesis (TLS) DNA polymerases were originally described as error-prone enzymes involved in the bypass of DNA lesions. However, extensive research over the past few decades has revealed that these enzymes play pivotal roles not only in lesion bypass, but also in a myriad of other cellular processes. Such processes include DNA replication, DNA repair, epigenetics, immune signaling, and even viral infection. This review discusses the wide range of functions exhibited by TLS polymerases, including their underlying biochemical mechanisms and associated mutagenicity. Given their multitasking ability to alleviate replication stress, TLS polymerases represent a cellular dependency and a critical vulnerability of cancer cells. Hence, this review also highlights current and emerging strategies for targeting TLS polymerases in cancer therapy.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN , Daño del ADN , Libertad
3.
Annu Rev Genet ; 56: 207-228, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36028228

RESUMEN

DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Neoplasias , Animales , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN por Unión de Extremidades/genética , ADN , Daño del ADN/genética , Neoplasias/genética , ADN Polimerasa theta
4.
Genes Dev ; 35(17-18): 1256-1270, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385260

RESUMEN

Chemotherapy with cisplatin becomes limiting due to toxicity and secondary malignancies. In principle, therapeutics could be improved by targeting translesion synthesis (TLS) polymerases (Pols) that promote replication through intrastrand cross-links, the major cisplatin-induced DNA adduct. However, to specifically target malignancies with minimal adverse effects on normal cells, a good understanding of TLS mechanisms in normal versus cancer cells is paramount. We show that in normal cells, TLS through cisplatin intrastrand cross-links is promoted by Polη- or Polι-dependent pathways, both of which require Rev1 as a scaffolding component. In contrast, cancer cells require Rev1-Polζ. Our findings that a recently identified Rev1 inhibitor, JH-RE-06, purported to specifically disrupt Rev1 interaction with Polζ to block TLS through cisplatin adducts in cancer cells, abrogates Rev1's ability to function with Y family Pols as well, implying that by inactivating Rev1-dependent TLS in normal cells, this inhibitor will exacerbate the toxicity and tumorigenicity of chemotherapeutics with cisplatin.


Asunto(s)
Cisplatino , Daño del ADN , Cisplatino/farmacología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
5.
Mol Cell ; 74(4): 785-800.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30948267

RESUMEN

Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.


Asunto(s)
Antibacterianos/efectos adversos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Mutagénesis/genética , División Celular/efectos de los fármacos , Ciprofloxacina/efectos adversos , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Mutación , Especies Reactivas de Oxígeno/metabolismo , Respuesta SOS en Genética/efectos de los fármacos , Factor sigma/genética
6.
Mol Cell ; 65(1): 78-90, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27916662

RESUMEN

During DNA replication, proliferating cell nuclear antigen (PCNA) adopts a ring-shaped structure to promote processive DNA synthesis, acting as a sliding clamp for polymerases. Known posttranslational modifications function at the outer surface of the PCNA ring to favor DNA damage bypass. Here, we demonstrate that acetylation of lysine residues at the inner surface of PCNA is induced by DNA lesions. We show that cohesin acetyltransferase Eco1 targets lysine 20 at the sliding surface of the PCNA ring in vitro and in vivo in response to DNA damage. Mimicking constitutive acetylation stimulates homologous recombination and robustly suppresses the DNA damage sensitivity of mutations in damage tolerance pathways. In comparison to the unmodified trimer, structural differences are observed at the interface between protomers in the crystal structure of the PCNA-K20ac ring. Thus, acetylation regulates PCNA sliding on DNA in the presence of DNA damage, favoring homologous recombination linked to sister-chromatid cohesion.


Asunto(s)
Acetiltransferasas/metabolismo , Cromátides , Cromosomas Fúngicos , Daño del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Genotipo , Humanos , Lisina , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenotipo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
7.
Bioessays ; 45(1): e2200168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36385254

RESUMEN

Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.


Asunto(s)
Rotura Cromosómica , Reparación del ADN por Unión de Extremidades , Genoma Humano , Repeticiones de Microsatélite , Humanos , Sistemas CRISPR-Cas
8.
Bioessays ; 45(6): e2300020, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37039277

RESUMEN

Numerous eukaryotic DNA processing enzymes, such as DNA polymerases and ligases, bind the processivity factor PCNA, which acts as a platform to recruit and regulate the binding of enzymes to their DNA substrate. Multiple PCNA-interacting motifs (PIPs) are present in these enzymes, but their individual structural and functional role has been a matter of debate. Recent cryo-EM reconstructions of high-fidelity DNA polymerase Pol δ (Pol δ), translesion synthesis DNA polymerase κ (Pol κ) and Ligase 1 (Lig1) bound to a DNA substrate and PCNA demonstrate that the critical interaction with PCNA involves the internal PIP proximal to the catalytic domain. The ancillary PIPs, located in long disordered regions, are instead invisible in the reconstructions, and appear to function as flexible tethers when the enzymes fall off the DNA. In this review, we discuss the recent structural advancements and propose a functional hierarchy for the PIPs in Pol δ, Pol κ, and Lig1.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , Replicación del ADN , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo
9.
Crit Rev Biochem Mol Biol ; 57(4): 412-442, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36170051

RESUMEN

During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.


Asunto(s)
ADN Helicasas , Replicación del ADN , ADN/genética , ADN Helicasas/genética , Reparación del ADN , Humanos , Saccharomyces cerevisiae/metabolismo
10.
Trends Genet ; 37(5): 476-487, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608117

RESUMEN

Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Replicación del ADN/fisiología , Neoplasias/genética , Animales , ADN Polimerasa III/genética , Reparación del ADN , Humanos , Hidroxiurea/química , Neoplasias/patología , Oncogenes
11.
Virol J ; 21(1): 200, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187833

RESUMEN

BACKGROUND: Viruses with double-stranded (ds) DNA genomes in the realm Duplodnaviria share a conserved structural gene module but show a broad range of variation in their repertoires of DNA replication proteins. Some of the duplodnaviruses encode (nearly) complete replication systems whereas others lack (almost) all genes required for replication, relying on the host replication machinery. DNA polymerases (DNAPs) comprise the centerpiece of the DNA replication apparatus. The replicative DNAPs are classified into 4 unrelated or distantly related families (A-D), with the protein structures and sequences within each family being, generally, highly conserved. More than half of the duplodnaviruses encode a DNAP of family A, B or C. We showed previously that multiple pairs of closely related viruses in the order Crassvirales encode DNAPs of different families. METHODS: Groups of phages in which DNAP swapping likely occurred were identified as subtrees of a defined depth in a comprehensive evolutionary tree of tailed bacteriophages that included phages with DNAPs of different families. The DNAP swaps were validated by constrained tree analysis that was performed on phylogenetic tree of large terminase subunits, and the phage genomes encoding swapped DNAPs were aligned using Mauve. The structures of the discovered unusual DNAPs were predicted using AlphaFold2. RESULTS: We identified four additional groups of tailed phages in the class Caudoviricetes in which the DNAPs apparently were swapped on multiple occasions, with replacements occurring both between families A and B, or A and C, or between distinct subfamilies within the same family. The DNAP swapping always occurs "in situ", without changes in the organization of the surrounding genes. In several cases, the DNAP gene is the only region of substantial divergence between closely related phage genomes, whereas in others, the swap apparently involved neighboring genes encoding other proteins involved in phage genome replication. In addition, we identified two previously undetected, highly divergent groups of family A DNAPs that are encoded in some phage genomes along with the main DNAP implicated in genome replication. CONCLUSIONS: Replacement of the DNAP gene by one encoding a DNAP of a different family occurred on many independent occasions during the evolution of different families of tailed phages, in some cases, resulting in very closely related phages encoding unrelated DNAPs. DNAP swapping was likely driven by selection for avoidance of host antiphage mechanisms targeting the phage DNAP that remain to be identified, and/or by selection against replicon incompatibility.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Filogenia , Proteínas Virales , ADN Polimerasa Dirigida por ADN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Evolución Molecular , Genoma Viral , Caudovirales/genética , Caudovirales/clasificación , ADN Viral/genética , Bacteriófagos/genética , Bacteriófagos/enzimología , Bacteriófagos/clasificación , Replicación del ADN
12.
Biotechnol Bioeng ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275897

RESUMEN

Harnessing DNA as a high-density storage medium for information storage and molecular recording of signals has been of increasing interest in the biotechnology field. Recently, progress in enzymatic DNA synthesis, DNA digital data storage, and DNA-based molecular recording has been made by leveraging the activity of the template-independent DNA polymerase, terminal deoxynucleotidyl transferase (TdT). TdT adds deoxyribonucleotides to the 3' end of single-stranded DNA, generating random sequences of single-stranded DNA. TdT can use several divalent cations for its enzymatic activity and exhibits shifts in deoxyribonucleotide incorporation frequencies in response to changes in its reaction environment. However, there is limited understanding of sequence-structure-function relationships regarding these properties, which in turn limits our ability to modulate TdT to further advance TdT-based tools. Most TdT literature to-date explores the activity of murine, bovine or human TdTs; studies probing TdT sequence and structure largely focus on strictly conserved residues that are functionally critical to TdT activity. Here, we explore non-conserved TdT sequence space by surveying the natural diversity of TdT. We characterize a diverse set of TdT homologs from different organisms and identify several TdT residues/regions that confer differences in TdT behavior between homologs. The observations in this study can design rules for targeted TdT libraries, in tandem with a screening assay, to modulate TdT properties. Moreover, the data can be useful in guiding further studies of potential residues of interest. Overall, we characterize TdTs that have not been previously studied in the literature, and we provide new insights into TdT sequence-function relationships.

13.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892193

RESUMEN

The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural ß-D-configuration dictated by the sugar moiety. Their synthetic ß-L-enantiomers (ßLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual ßLdNs embedded in D-DNA. Here, we address the template properties of ßLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by ßLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase ß treated ßLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process ßLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize ßLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine ßLdNs were resistant to repair in human cells, whereas purine ßLdNs appear to be partly repaired. Overall, ßLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , ADN/química , ADN/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Conformación de Ácido Nucleico , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Estereoisomerismo
14.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279342

RESUMEN

Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.


Asunto(s)
Adenina , ADN Polimerasa Dirigida por ADN , Animales , Adenina/química , ADN Polimerasa Dirigida por ADN/metabolismo , Estrés Oxidativo , Daño del ADN , Mutágenos , Mamíferos/metabolismo , Reparación del ADN
15.
Dokl Biochem Biophys ; 518(1): 376-381, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39196527

RESUMEN

Click ligation is a technology of joining DNA fragments based on azide-alkyne cycloaddition. In the most common variant, click ligation introduces a 4-methyl-1,2,3-triazole (trz) group instead of the phosphodiester bond between two adjacent nucleosides. While this linkage is believed to be biocompatible, little is known about the possibility of its recognition by DNA repair systems or its potential for DNA polymerase stalling and miscoding. Here we report that trz linkage is resistant to several human and bacterial endonucleases involved in DNA repair. At the same time, it strongly blocks some DNA polymerases (Pfu, DNA polymerase ß) while allowing bypass by others (phage RB69 polymerase, Klenow fragment). All polymerases, except for DNA polymerase ß, showed high frequency of misinsertion at the trz site, incorporating dAMP instead of the next complementary nucleotide. Thus, click ligation can be expected to produce a large amount of errors if used in custom gene synthesis.


Asunto(s)
Química Clic , ADN , ADN/química , Química Clic/métodos , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , Triazoles/química , Moldes Genéticos , Azidas/química , Reparación del ADN
16.
Crit Rev Biochem Mol Biol ; 56(1): 17-30, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33179522

RESUMEN

DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.


Asunto(s)
Daño del ADN/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica , Humanos , Mitocondrias/metabolismo , Enzimas Multifuncionales/química
17.
Semin Cell Dev Biol ; 113: 27-37, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33967572

RESUMEN

DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.


Asunto(s)
Daño del ADN/genética , Replicación del ADN/genética , Humanos
18.
Chembiochem ; 24(4): e202200732, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36510378

RESUMEN

Tropolone is a non-benzenoid aromatic scaffold with unique photophysical and metal-chelating properties. Recently, it has been conjugated with DNA, and the photophysical properties of this conjugate have been explored. Tropolonyl-deoxyuridine (tr-dU) is a synthetic fluorescent DNA nucleoside analogue that exhibits pH-dependent emissions. However, its solvent-dependent fluorescence properties are unexplored owing to its poor solubility in most organic solvents. It would be interesting to incorporate it into DNA primer enzymatically. This report describes the solvent-dependent fluorescence properties of the silyl-derivative, and enzymatic incorporation of its triphosphate analogue. For practical use, its cell-internalization and cytotoxicity are also explored. tr-dU nucleoside was found to be a potential analogue to design DNA probes and can be explored for various therapeutic applications in the future.


Asunto(s)
ADN , Tropolona , Humanos , Tropolona/farmacología , Células HeLa , ADN/metabolismo , Nucleósidos , Timidina , Colorantes Fluorescentes , Solventes
19.
Chembiochem ; 24(5): e202200521, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36354312

RESUMEN

Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ARN , ADN Polimerasa Dirigida por ARN/genética , ARN , Clonación Molecular , ARN Polimerasas Dirigidas por ADN
20.
Anal Biochem ; 671: 115150, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054862

RESUMEN

DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.


Asunto(s)
Biotecnología , ADN Polimerasa Dirigida por ADN , Humanos , Estudios Prospectivos , ADN Polimerasa Dirigida por ADN/metabolismo , Biotecnología/métodos , Ingeniería de Proteínas , Reacción en Cadena de la Polimerasa , Replicación del ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda