Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 300(3): 105708, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311177

RESUMEN

A DNA double-strand break (DSB) is one of the most dangerous types of DNA damage that is repaired largely by homologous recombination or nonhomologous end-joining (NHEJ). The interplay of repair factors at the break directs which pathway is used, and a subset of these factors also function in more mutagenic alternative (alt) repair pathways. Resection is a key event in repair pathway choice and extensive resection, which is a hallmark of homologous recombination, and it is mediated by two nucleases, Exo1 and Dna2. We observed differences in resection and repair outcomes in cells harboring nuclease-dead dna2-1 compared with dna2Δ pif1-m2 that could be attributed to the level of Exo1 recovered at DSBs. Cells harboring dna2-1 showed reduced Exo1 localization, increased NHEJ, and a greater resection defect compared with cells where DNA2 was deleted. Both the resection defect and the increased rate of NHEJ in dna2-1 mutants were reversed upon deletion of KU70 or ectopic expression of Exo1. By contrast, when DNA2 was deleted, Exo1 and Ku70 recovery levels did not change; however, Nej1 increased as did the frequency of alt-end joining/microhomology-mediated end-joining repair. Our findings demonstrate that decreased Exo1 at DSBs contributed to the resection defect in cells expressing inactive Dna2 and highlight the complexity of understanding how functionally redundant factors are regulated in vivo to promote genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas , Proteínas de Unión al ADN , Exodesoxirribonucleasas , Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO Rep ; 24(12): e57585, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37965896

RESUMEN

Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.


Asunto(s)
Replicación del ADN , Proteínas de Unión al GTP , Humanos , Proteínas de Unión al GTP/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Daño del ADN , ADN
3.
Trends Biochem Sci ; 45(9): 779-793, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32513599

RESUMEN

DNA double-strand break (DSB) resection, once thought to be a simple enzymatic process, is emerging as a highly complex series of coordinated activities required to maintain genome integrity. Progress in cell biology, biochemistry, and genetics has deciphered the precise resecting activities, the regulatory components, and their ability to properly channel the resected DNA to the appropriate DNA repair pathway. Herein, we review the mechanisms of regulation of DNA resection, with an emphasis on negative regulators that prevent single-strand (ss)DNA accumulation to maintain genome stability. Interest in targeting DNA resection inhibitors is emerging because their inactivation leads to poly(ADP-ribose) polymerase inhibitor (PARPi) resistance. We also present detailed regulation of DNA resection machineries, their analysis by functional assays, and their impact on disease and PARPi resistance.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo
4.
J Biol Chem ; 299(2): 102802, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529288

RESUMEN

DNA resection-the nucleolytic processing of broken DNA ends-is the first step of homologous recombination. Resection is catalyzed by the resectosome, a multienzyme complex that includes bloom syndrome helicase (BLM), DNA2 or exonuclease 1 nucleases, and additional DNA-binding proteins. Although the molecular players have been known for over a decade, how the individual proteins work together to regulate DNA resection remains unknown. Using single-molecule imaging, we characterized the roles of the MRE11-RAD50-NBS1 complex (MRN) and topoisomerase IIIa (TOP3A)-RMI1/2 during long-range DNA resection. BLM partners with TOP3A-RMI1/2 to form the BTRR (BLM-TOP3A-RMI1/2) complex (or BLM dissolvasome). We determined that TOP3A-RMI1/2 aids BLM in initiating DNA unwinding, and along with MRN, stimulates DNA2-mediated resection. Furthermore, we found that MRN promotes the association between BTRR and DNA and synchronizes BLM and DNA2 translocation to prevent BLM from pausing during resection. Together, this work provides direct observation of how MRN and DNA2 harness the BTRR complex to resect DNA efficiently and how TOP3A-RMI1/2 regulates the helicase activity of BLM to promote efficient DNA repair.


Asunto(s)
Reparación del ADN , ADN-Topoisomerasas de Tipo I , ADN , Complejos Multienzimáticos , Humanos , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , Complejos Multienzimáticos/metabolismo , Imagen Individual de Molécula
5.
Bioessays ; 40(10): e1800045, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30091472

RESUMEN

Transcription is a fundamental cellular process and the first step in gene regulation. Although RNA polymerase (RNAP) is highly processive, in growing cells the progression of transcription can be hindered by obstacles on the DNA template, such as damaged DNA. The authors recent findings highlight a trade-off between transcription fidelity and DNA break repair. While a lot of work has focused on the interaction between transcription and nucleotide excision repair, less is known about how transcription influences the repair of DNA breaks. The authors suggest that when the cell experiences stress from DNA breaks, the control of RNAP processivity affects the balance between preserving transcription integrity and DNA repair. Here, how the conflict between transcription and DNA double-strand break (DSB) repair threatens the integrity of both RNA and DNA are discussed. In reviewing this field, the authors speculate on cellular paradigms where this equilibrium is well sustained, and instances where the maintenance of transcription fidelity is favored over genome stability.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Roturas del ADN de Doble Cadena , Daño del ADN , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Biol Chem ; 290(19): 12300-12, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25833945

RESUMEN

The DNA end resection process dictates the cellular response to DNA double strand break damage and is essential for genome maintenance. Although insufficient DNA resection hinders homology-directed repair and ATR (ataxia telangiectasia and Rad3 related)-dependent checkpoint activation, overresection produces excessive single-stranded DNA that could lead to genomic instability. However, the mechanisms controlling DNA end resection are poorly understood. Here we show that the major resection nuclease Exo1 is regulated both positively and negatively by protein-protein interactions to ensure a proper level of DNA resection. We have shown previously that the sliding DNA clamp proliferating cell nuclear antigen (PCNA) associates with the C-terminal domain of Exo1 and promotes Exo1 damage association and DNA resection. In this report, we show that 14-3-3 proteins interact with a central region of Exo1 and negatively regulate Exo1 damage recruitment and subsequent resection. 14-3-3s limit Exo1 damage association, at least in part, by suppressing its association with PCNA. Disruption of the Exo1 interaction with 14-3-3 proteins results in elevated sensitivity of cells to DNA damage. Unlike Exo1, the Dna2 resection pathway is apparently not regulated by PCNA and 14-3-3s. Our results provide critical insights into the mechanism and regulation of the DNA end resection process and may have implications for cancer treatment.


Asunto(s)
Proteínas 14-3-3/metabolismo , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular , ADN/genética , Reparación del ADN , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Xenopus
7.
Cell Rep ; 42(2): 112077, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36729832

RESUMEN

At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.


Asunto(s)
ARN , Telómero , ARN/genética , Telómero/genética , ADN , Acortamiento del Telómero , ADN de Cadena Simple
8.
Cells ; 12(23)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067190

RESUMEN

Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular , Mutágenos , Animales , Ratones , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo
9.
Front Mol Biosci ; 8: 664872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996910

RESUMEN

The correct repair of DNA double-strand breaks is essential for maintaining the stability of the genome, thus ensuring the survival and fitness of any living organism. Indeed, the repair of these lesions is a complicated affair, in which several pathways compete for the DNA ends in a complex balance. Thus, the fine-tuning of the DNA double-strand break repair pathway choice relies on the different regulatory layers that respond to environmental cues. Among those different tiers of regulation, RNA modifications have just emerged as a promising field.

10.
DNA Repair (Amst) ; 82: 102690, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31479843

RESUMEN

Combining natural products with chemotherapy and/or radiotherapy may increase the efficacy of cancer treatment. It has been hypothesized that natural products may inhibit DNA repair and sensitize cancer cells to DNA damage-based cancer therapy. However, the molecular mechanisms underlying these activities remain unclear. In this study, we found that diallyl disulfide (DADS), an organosulfur compound, increased the sensitivity of yeast cells to DNA damage and has potential for development as an adjuvant drug for DNA damage-based cancer therapy. We induced HO endonuclease to generate a specific DNA double-strand break (DSB) by adding galactose to yeast and used this system to study how DADS affects DNA repair. In this study, we found that DADS inhibited DNA repair in single-strand annealing (SSA) system and sensitized SSA cells to a single DSB. DADS impaired DNA repair by inhibiting the protein levels of the DNA resection-related proteins Sae2 and Exo1. We also found that the recruitment of MRX and the Mec1-Ddc2 complex to a DSB was prevented by DADS. This result suggests that DADS counteracts G2/M DNA damage checkpoint activation in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Only by elucidating the molecular mechanisms by which DADS influences DNA repair will we be able to discover new adjuvant drugs to improve chemotherapy and/or radiotherapy.


Asunto(s)
Compuestos Alílicos/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Disulfuros/farmacología , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/genética , Sinergismo Farmacológico , Proteolisis/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
DNA Repair (Amst) ; 81: 102652, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31326363

RESUMEN

RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.


Asunto(s)
Epigénesis Genética , Inestabilidad Genómica , Transcripción Genética , Animales , Escherichia coli/genética , Eucariontes/genética , Humanos
12.
Microb Cell ; 6(1): 65-101, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652106

RESUMEN

Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

13.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652105

RESUMEN

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

14.
DNA Repair (Amst) ; 66-67: 11-23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29705135

RESUMEN

The appropriate repair of DNA double strand breaks is critical for genome maintenance. Thus, several cellular pathways collaborate to orchestrate a coordinated response. These include the repair of the breaks, which could be achieved by different mechanisms. A key protein involved in the regulation of the repair of broken chromosomes is CtIP. Here, we have found new partners of CtIP involved in the regulation of DNA break repair through affecting DNA end resection. We focus on the splicing complex SF3B and show that its depletion impairs DNA end resection and hampers homologous recombination. Functionally, SF3B controls CtIP function at, as least, two levels: by affecting CtIP mRNA levels and controlling CtIP recruitment to DNA breaks, in a way that requires ATM-mediated phosphorylation of SF3B2 at serine 289. Indeed, overexpression of CtIP rescues the resection defect caused by SF3B downregulation. Strikingly, other SF3B depletion phenotypes, such as impaired homologous recombination or cellular sensitivity to DNA damaging agents, are independent of CtIP levels, suggesting a more general role of SF3B in controlling the response to chromosome breaks.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Reparación del ADN , Endodesoxirribonucleasas , Humanos , Fosforilación
15.
Methods Mol Biol ; 1672: 147-154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043623

RESUMEN

Homologous recombination is initiated by the so-called DNA end resection, the 5'-3' nucleolytic degradation of a single strand of the DNA at each side of the break. The presence of resected DNA is an obligatory step for homologous recombination. Moreover, the amount of resected DNA modulates the prevalence of different recombination pathways. In different model organisms, there are several published ways to visualize and measure with more or less detail the amount of DNA resected. In human cells, however, technical constraints hampered the study of resection at high resolution. Some information might be gathered from the study of endonuclease-created DSBs, in which the resection of breaks at known sites can be followed by PCR or ChIP. In this chapter, we describe in detail a novel assay to study DNA end resection in breaks located on unknown positions. Here, we use ionizing radiation to induce double-strand breaks, but the same approach can be used to monitor resection induced by different DNA damaging agents. By modifying the DNA-combing technique, used for high-resolution replication analyses, we can measure resection progression at the level of individual DNA fibers. Thus, we named the method Single Molecule Analysis of Resection Tracks (SMART). We use human cells in culture as a model system, but in principle the same approach would be feasible to any model organism adjusting accordingly the DNA isolation part of the protocol.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Imagen Individual de Molécula/métodos , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos
16.
Transcription ; 9(5): 315-320, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929421

RESUMEN

It was recently shown that removal of GreA, a transcription fidelity factor, enhances DNA break repair. This counterintuitive result, arising from unresolved backtracked RNA polymerase impeding DNA resection and thereby facilitating RecA-loading, leads to an interesting corollary: error-free full-length transcripts and broken chromosomes. Therefore, transcription fidelity may compromise genomic integrity.


Asunto(s)
Replicación del ADN , Escherichia coli/genética , Genoma Bacteriano , Transcripción Genética , ADN/genética , ADN/metabolismo , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Epigénesis Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
17.
Stem Cell Reports ; 8(2): 432-445, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28065643

RESUMEN

Acquired genomic instability is one of the major concerns for the clinical use of induced pluripotent stem cells (iPSCs). All reprogramming methods are accompanied by the induction of DNA damage, of which double-strand breaks are the most cytotoxic and mutagenic. Consequently, DNA repair genes seem to be relevant for accurate reprogramming to minimize the impact of such DNA damage. Here, we reveal that reprogramming is associated with high levels of DNA end resection, a critical step in homologous recombination. Moreover, the resection factor CtIP is essential for cell reprogramming and establishment of iPSCs, probably to repair reprogramming-induced DNA damage. Our data reveal a new role for DNA end resection in maintaining genomic stability during cell reprogramming, allowing DNA repair fidelity to be retained in both human and mouse iPSCs. Moreover, we demonstrate that reprogramming in a resection-defective environment has long-term consequences on stem cell self-renewal and differentiation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Supervivencia Celular/genética , Reprogramación Celular/genética , Aptitud Genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Nucleares/genética , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Daño del ADN , Endodesoxirribonucleasas , Inestabilidad Genómica , Humanos , Proteínas Nucleares/metabolismo
18.
Oncotarget ; 7(22): 32172-83, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27058754

RESUMEN

Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). In addition, however, CtIP has also been implicated in the formation of aberrant chromosomal rearrangements in an MMEJ-dependent manner, an activity that could potentially promote tumor development by increasing genome instability. To clarify whether CtIP acts in vivo to suppress or promote tumorigenesis, we have examined its oncogenic potential in mouse models of human breast cancer. Surprisingly, mice heterozygous for a null Ctip allele did not display an increased susceptibility to tumor formation. Moreover, mammary-specific biallelic CtIP ablation did not elicit breast tumors in a manner reminiscent of BRCA1 loss. Instead, CtIP inactivation dramatically reduced the kinetics of mammary tumorigenesis in mice bearing mammary-specific lesions of the p53 gene. Thus, unlike other repair factors, CtIP is not a tumor suppressor, but has oncogenic properties that can promote tumorigenesis, consistent with its ability to facilitate MMEJ-dependent chromosomal instability. Consequently, inhibition of CtIP-mediated MMEJ may prove effective against tumor types, such as human breast cancer, that display MMEJ-dependent chromosomal rearrangements.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Reparación del ADN por Recombinación , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Heterocigoto , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , Oncogenes , Fenotipo , Factores de Tiempo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Cell Rep ; 16(1): 161-173, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27320928

RESUMEN

The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , RecQ Helicasas/metabolismo , Proteínas Portadoras , Línea Celular Tumoral , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares , Reparación del ADN por Recombinación , Proteína de Replicación A/metabolismo , Proteínas Represoras
20.
Cell Cycle ; 14(15): 2439-50, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26083678

RESUMEN

DNA double-strand break repair by the error-free pathway of homologous recombination (HR) requires the concerted action of several factors. Among these, EXO1 and DNA2/BLM are responsible for the extensive resection of DNA ends to produce 3'-overhangs, which are essential intermediates for downstream steps of HR. Here we show that EXO1 is a SUMO target and that sumoylation affects EXO1 ubiquitylation and protein stability. We identify an UBC9-PIAS1/PIAS4-dependent mechanism controlling human EXO1 sumoylation in vivo and demonstrate conservation of this mechanism in yeast by the Ubc9-Siz1/Siz2 using an in vitro reconstituted system. Furthermore, we show physical interaction between EXO1 and the de-sumoylating enzyme SENP6 both in vitro and in vivo, promoting EXO1 stability. Finally, we identify the major sites of sumoylation in EXO1 and show that ectopic expression of a sumoylation-deficient form of EXO1 rescues the DNA damage-induced chromosomal aberrations observed upon wt-EXO1 expression. Thus, our study identifies a novel layer of regulation of EXO1, making the pathways that regulate its function an ideal target for therapeutic intervention.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/genética , Exodesoxirribonucleasas/metabolismo , Sumoilación/fisiología , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Línea Celular , Cisteína Endopeptidasas/metabolismo , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Estabilidad Proteica , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda