Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Geriatr Psychiatry ; 31(2): 97-109, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36210262

RESUMEN

OBJECTIVE: Veterans are at high risk for health morbidities linked to premature mortality. Recently developed "epigenetic clock" algorithms, which compute intra-individual differences between biological and chronological aging, can help inform prediction of accelerated biological aging and mortality risk. To date, however, scarce research has examined potentially modifiable correlates of GrimAge, a novel epigenetic clock comprised of DNA methylation surrogates of plasma proteins and smoking pack-years associated with various morbidities and time-to-death. The objective of the study was to examine psychosocial correlates of this novel epigenetic clock. DESIGN: Cross-sectional study. SETTING: U.S. veteran population. PARTICIPANTS: Participants were male, European American (EA), and derived from a nationally representative sample of U.S. veterans (N = 1,135, mean age = 63.3, standard deviation [SD] = 13.0). MEASUREMENTS: We examined the prevalence of accelerated GrimAge and its association with a broad range of health, lifestyle, and psychosocial variables. RESULTS: A total 18.3% of veterans had accelerated GrimAge (≥5 years greater GrimAge than chronological age; mean = 8.4 years acceleration, SD = 2.2). Fewer days of weekly physical exercise (relative variance explained [RVE] = 27%), history of lifetime substance use disorder (RVE = 21%), greater number of lifetime traumas (RVE = 19%), lower gratitude (RVE = 13%), reduced sleep quality (RVE = 7%), lower openness to experience (RVE = 7%), and unmarried/partnered status (RVE = 6%) were independently associated with increased odds of accelerated GrimAge. Increasing numbers of these risk factors were associated with greater odds of accelerated GrimAge, with greatest likelihood of acceleration for veterans with ≥3 risk factors (weighted 21.5%). CONCLUSIONS: These results suggest that nearly 1-of-5 EA male U.S. veterans have accelerated GrimAge, and highlight a broad range of health, lifestyle, and psychosocial variables associated with accelerated GrimAge. Given that many of these factors are modifiable, these findings provide promising leads for risk stratification models of accelerated biological aging and precision medicine-based targets for interventions to mitigate risk for premature mortality in this population.


Asunto(s)
Veteranos , Humanos , Masculino , Femenino , Veteranos/psicología , Estudios Transversales , Envejecimiento , Prevalencia , Metilación de ADN
2.
J Transl Med ; 20(1): 353, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945616

RESUMEN

BACKGROUND: Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS: We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS: DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS: We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.


Asunto(s)
Metilación de ADN , Sangre Fetal , Envejecimiento/genética , Biomarcadores , Metilación de ADN/genética , ADN Mitocondrial/genética , Epigénesis Genética , Femenino , Humanos , Recién Nacido , Embarazo
3.
Exp Cell Res ; 370(2): 322-332, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29964050

RESUMEN

To study delayed genetic and epigenetic radiation effects, which may trigger radiation-induced carcinogenesis, we have established single-cell clones from irradiated and non-irradiated primary human fibroblasts. Stable clones were endowed with the same karyotype in all analyzed metaphases after 20 population doublings (PDs), whereas unstable clones displayed mosaics of normal and abnormal karyotypes. To account for variation in radiation sensitivity, all experiments were performed with two different fibroblast strains. After a single X-ray dose of 2 Gy more than half of the irradiated clones exhibited radiation-induced genome instability (RIGI). Irradiated clones displayed an increased rate of loss of chromosome Y (LOY) and copy number variations (CNVs), compared to controls. CNV breakpoints clustered in specific chromosome regions, in particular 3p14.2 and 7q11.21, coinciding with common fragile sites. CNVs affecting the FHIT gene in FRA3B were observed in independent unstable clones and may drive RIGI. Bisulfite pyrosequencing of control clones and the respective primary culture revealed global hypomethylation of ALU, LINE-1, and alpha-satellite repeats as well as rDNA hypermethylation during in vitro ageing. Irradiated clones showed further reduced ALU and alpha-satellite methylation and increased rDNA methylation, compared to controls. Methylation arrays identified several hundred differentially methylated genes and several enriched pathways associated with in vitro ageing. Methylation changes in 259 genes and the MAP kinase signaling pathway were associated with delayed radiation effects (after 20 PDs). Collectively, our results suggest that both genetic (LOY and CNVs) and epigenetic changes occur in the progeny of exposed cells that were not damaged directly by irradiation, likely contributing to radiation-induced carcinogenesis. We did not observe epigenetic differences between stable and unstable irradiated clones. The fact that the DNA methylation (DNAm) age of clones derived from the same primary culture varied greatly suggests that DNAm age of a single cell (represented by a clone) can be quite different from the DNAm age of a tissue. We propose that DNAm age reflects the emergent property of a large number of individual cells whose respective DNAm ages can be highly variable.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Daño del ADN/genética , Epigénesis Genética/genética , Fibroblastos/citología , Tolerancia a Radiación/genética , Supervivencia Celular/genética , Células Cultivadas , Metilación de ADN/genética , Fibroblastos/efectos de la radiación , Inestabilidad Genómica/genética , Humanos
4.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234328

RESUMEN

Telomere length has been accepted widely as a biomarker of aging. Recently, a novel candidate biomarker has been suggested to predict an individual's chronological age with high accuracy: The epigenetic clock is based on the weighted DNA methylation (DNAm) fraction of a number of cytosine-phosphate-guanine sites (CpGs) selected by penalized regression analysis. Here, an established methylation-sensitive single nucleotide primer extension method was adapted, to estimate the epigenetic age of the 1005 participants of the LipidCardio Study, a patient cohort characterised by high prevalence of cardiovascular disease, based on a seven CpGs epigenetic clock. Furthermore, we measured relative leukocyte telomere length (rLTL) to assess the relationship between the established and the promising new measure of biological age. Both rLTL (0.79 ± 0.14) and DNAm age (69.67 ± 7.27 years) were available for 773 subjects (31.6% female; mean chronological age= 69.68 ± 11.01 years; mean DNAm age acceleration = -0.01 ± 7.83 years). While we detected a significant correlation between chronological age and DNAm age (n = 779, R = 0.69), we found neither evidence of an association between rLTL and the DNAm age (ß = 3.00, p = 0.18) nor rLTL and the DNAm age acceleration (ß = 2.76, p = 0.22) in the studied cohort, suggesting that DNAm age and rLTL measure different aspects of biological age.


Asunto(s)
Envejecimiento , Metilación de ADN , Homeostasis del Telómero , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Transl Med Aging ; 7: 66-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576443

RESUMEN

Psychological stress remains an important risk factor for morbidity and mortality throughout the life course. However, there have been counterintuitive findings reported in previous studies of older persons that examine the relationships of perceived psychological stress with DNA methylation-based markers of aging, which also serve as predictors of morbidity and mortality (epigenetic age/clocks). We aimed to replicate and expand findings from existing work by examining relationships of self-reported stress with nine epigenetic clocks: Hannum, Horvath, Intrinsic, Extrinsic, SkinBloodClock, PhenoAge, GrimAge, DNAm Telomere Length, and Pace of Aging. We analyzed data from 607 male participants (mean age 73.2 years) of the VA Normative Aging Study with one to two study visits from 1999 to 2007 (observations = 956). Stress was assessed via the 14-item Perceived Stress Scale (PSS). Epigenetic age was calculated from DNA methylation measured in leukocytes with the HumanMethylation450 BeadChip. In linear mixed effects models adjusted for demographic/lifestyle/health factors, a standard deviation (sd) increase in PSS was associated with Horvath (ß = -0.35-years, 95%CI: -0.61, -0.09, P=0.008) and Intrinsic (ß = -0.40-years, 95%CI: -0.67, -0.13, P=0.004) epigenetic age deceleration. However, in models limited to participants with the highest levels of stress (≥ 75th-percentile), Horvath (ß = 2.29-years, 95%CI: 0.16, 4.41, P=0.04) and Intrinsic (ß = 2.06-years, 95%CI: -0.17, 4.28, P=0.07) age acceleration associations were observed. Our results reinforce the complexity of psychological stress and epigenetic aging relationships and lay a foundation for future studies that explore longitudinal relationships with other adult stress metrics and factors that can influence stress such as resilience measures.

6.
Front Aging ; 4: 1258184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38500495

RESUMEN

Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.

7.
J Gerontol A Biol Sci Med Sci ; 77(12): 2387-2394, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35917578

RESUMEN

In humans and rats, aging is associated with a progressive deterioration of spatial learning and memory. These functional alterations are correlated with morphological and molecular changes in the hippocampus. Here, we assessed age-related changes in DNA methylation (DNAm) landscape in the rat hippocampus and the correlation of spatial memory with hippocampal DNAm age in 2.6- and 26.6-month-old rats. Spatial memory performance was assessed with the Barnes maze test. To evaluate learning ability and spatial memory retention, we assessed the time spent by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. The rat pan-tissue clock was applied to DNAm data from hippocampal tissue. An enrichment pathway analysis revealed that neuron fate commitment, brain development, and central nervous system development were processes whose underlying genes were enriched in hypermethylated CpGs in the old rats. In the old rat hippocampi, the methylation levels of CpG proximal to transcription factors associated with genes Pax5, Lbx1, Nr2f2, Hnf1b, Zic1, Zic4, Hoxd9; Hoxd10, Gli3, Gsx1 and Lmx1b, and Nipbl showed a significant regression with spatial memory performance. Regression analysis of different memory performance indices with hippocampal DNAm age was significant. These results suggest that age-related hypermethylation of transcription factors related to certain gene families, such as Zic and Gli, may play a causal role in the decline in spatial memory in old rats. Hippocampal DNAm age seems to be a reliable index of spatial memory performance in young and old rats.


Asunto(s)
Metilación de ADN , Memoria Espacial , Animales , Ratas , Envejecimiento/genética , Proteínas de Ciclo Celular/genética , Epigénesis Genética , Hipocampo , Aprendizaje por Laberinto/fisiología , Memoria Espacial/fisiología , Factores de Transcripción/genética
8.
Front Cell Dev Biol ; 10: 985274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176280

RESUMEN

The prevalence of obesity has dramatically increased worldwide over the past decades. Aging-related chronic conditions, such as type 2 diabetes and cardiovascular disease, are more prevalent in individuals with obesity, thus reducing their lifespan. Epigenetic clocks, the new metrics of biological age based on DNA methylation patterns, could be considered a reflection of the state of one's health. Several environmental exposures and lifestyle factors can induce epigenetic aging accelerations, including obesity, thus leading to an increased risk of age-related diseases. The insight into the complex link between obesity and aging might have significant implications for the promotion of health and the mitigation of future disease risk. The present narrative review takes into account the interaction between epigenetic aging and obesity, suggesting that epigenome may be an intriguing target for age-related physiological changes and that its modification could influence aging and prolong a healthy lifespan. Therefore, we have focused on DNA methylation age as a clinical biomarker, as well as on the potential reversal of epigenetic age using a personalized diet- and lifestyle-based intervention.

9.
Biology (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36671760

RESUMEN

We evaluated associations between nine epigenetic age acceleration (EAA) scores and 18 cardiometabolic phenotypes using an Eastern European ageing population cohort richly annotated for a diverse set of phenotypes (subsample, n = 306; aged 45-69 years). This was implemented by splitting the data into groups with positive and negative EAAs. We observed strong association between all EAA scores and sex, suggesting that any analysis of EAAs should be adjusted by sex. We found that some sex-adjusted EAA scores were significantly associated with several phenotypes such as blood levels of gamma-glutamyl transferase and low-density lipoprotein, smoking status, annual alcohol consumption, multiple carotid plaques, and incident coronary heart disease status (not necessarily the same phenotypes for different EAAs). We demonstrated that even after adjusting EAAs for sex, EAA-phenotype associations remain sex-specific, which should be taken into account in any downstream analysis involving EAAs. The obtained results suggest that in some EAA-phenotype associations, negative EAA scores (i.e., epigenetic age below chronological age) indicated more harmful phenotype values, which is counterintuitive. Among all considered epigenetic clocks, GrimAge was significantly associated with more phenotypes than any other EA scores in this Russian sample.

10.
Mech Ageing Dev ; 201: 111616, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879249

RESUMEN

The epigenetic clock parameter DNAm age acceleration is a promising biomarker of aging. We have recently described an epigenetic clock based on only seven cytosine-phosphate-guanine sites, which is highly associated with chronological age. The aim of this study was to examine this epigenetic clock with respect to its relationship with cardiovascular health (CVH) in older adults. We used data from the Berlin Aging Study II (BASE-II; 1,671 participants; 68.8 ± 3.7 years old). CVH was operationalized using two different CVH scores, the Framingham Risk Score (FRS), and the Life's simple 7 (LS7). To adjust for potential confounding, e.g. by sex, we performed regression analyses. The LS7 score was higher, i.e. more favorable, in woman than in men (8.8 ± 2 vs. 8.2 ± 2, p < 0.001). DNAm age acceleration was associated with the FRS (ß = 0.122, p = 0.028) and with the LS7 (ß = -0.804, p = 0.032). In more detail, physical activity (ß = -0.461, p = 0.05), HDL-cholesterol (ß = 0.343, p = 0.03) and total cholesterol (ß = -0.364, p = 0.002) were associated with epigenetic age acceleration. We present evidence suggesting that better CVH is associated with decelerated biological aging measured by the epigenetic clock.


Asunto(s)
Envejecimiento/fisiología , HDL-Colesterol/sangre , Colesterol/sangre , Metilación de ADN/genética , Epigénesis Genética/fisiología , Ejercicio Físico/fisiología , Envejecimiento Saludable/fisiología , Anciano , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/prevención & control , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Metilasas de Modificación del ADN/metabolismo , Epigenómica/métodos , Femenino , Alemania , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino
11.
Cells ; 11(3)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159278

RESUMEN

Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.


Asunto(s)
Epigenómica , Longevidad , Envejecimiento/genética , Metilación de ADN/genética , Epigénesis Genética , Humanos , Longevidad/genética
12.
Clin Epigenetics ; 13(1): 121, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078457

RESUMEN

BACKGROUND: The difference between an individual's chronological and DNA methylation predicted age (DNAmAge), termed DNAmAge acceleration (DNAmAA), can capture life-long environmental exposures and age-related physiological changes reflected in methylation status. Several studies have linked DNAmAA to morbidity and mortality, yet its relationship with kidney function has not been assessed. We evaluated the associations between seven DNAm aging and lifespan predictors (as well as GrimAge components) and five kidney traits (estimated glomerular filtration rate [eGFR], urine albumin-to-creatinine ratio [uACR], serum urate, microalbuminuria and chronic kidney disease [CKD]) in up to 9688 European, African American and Hispanic/Latino individuals from seven population-based studies. RESULTS: We identified 23 significant associations in our large trans-ethnic meta-analysis (p < 1.43E-03 and consistent direction of effect across studies). Age acceleration measured by the Extrinsic and PhenoAge estimators, as well as Zhang's 10-CpG epigenetic mortality risk score (MRS), were associated with all parameters of poor kidney health (lower eGFR, prevalent CKD, higher uACR, microalbuminuria and higher serum urate). Six of these associations were independently observed in European and African American populations. MRS in particular was consistently associated with eGFR (ß = - 0.12, 95% CI = [- 0.16, - 0.08] change in log-transformed eGFR per unit increase in MRS, p = 4.39E-08), prevalent CKD (odds ratio (OR) = 1.78 [1.47, 2.16], p = 2.71E-09) and higher serum urate levels (ß = 0.12 [0.07, 0.16], p = 2.08E-06). The "first-generation" clocks (Hannum, Horvath) and GrimAge showed different patterns of association with the kidney traits. Three of the DNAm-estimated components of GrimAge, namely adrenomedullin, plasminogen-activation inhibition 1 and pack years, were positively associated with higher uACR, serum urate and microalbuminuria. CONCLUSION: DNAmAge acceleration and DNAm mortality predictors estimated in whole blood were associated with multiple kidney traits, including eGFR and CKD, in this multi-ethnic study. Epigenetic biomarkers which reflect the systemic effects of age-related mechanisms such as immunosenescence, inflammaging and oxidative stress may have important mechanistic or prognostic roles in kidney disease. Our study highlights new findings linking kidney disease to biological aging, and opportunities warranting future investigation into DNA methylation biomarkers for prognostic or risk stratification in kidney disease.


Asunto(s)
Envejecimiento Prematuro/mortalidad , Mortalidad/tendencias , Insuficiencia Renal/sangre , Anciano , Envejecimiento Prematuro/epidemiología , Envejecimiento Prematuro/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal/etiología , Insuficiencia Renal/mortalidad
13.
Clin Epigenetics ; 12(1): 105, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660606

RESUMEN

BACKGROUND: DNA methylation (DNAm) age constitutes a powerful tool to assess the molecular age and overall health status of biological samples. Recently, it has been shown that tissue-specific DNAm age predictors may present superior performance compared to the pan- or multi-tissue counterparts. The skin is the largest organ in the body and bears important roles, such as body temperature control, barrier function, and protection from external insults. As a consequence of the constant and intimate interaction between the skin and the environment, current DNAm estimators, routinely trained using internal tissues which are influenced by other stimuli, are mostly inadequate to accurately predict skin DNAm age. RESULTS: In the present study, we developed a highly accurate skin-specific DNAm age predictor, using DNAm data obtained from 508 human skin samples. Based on the analysis of 2,266 CpG sites, we accurately calculated the DNAm age of cultured skin cells and human skin biopsies. Age estimation was sensitive to the biological age of the donor, cell passage, skin disease status, as well as treatment with senotherapeutic drugs. CONCLUSIONS: This highly accurate skin-specific DNAm age predictor constitutes a holistic tool that will be of great use in the analysis of human skin health status/molecular aging, as well as in the analysis of the potential of established and novel compounds to alter DNAm age.


Asunto(s)
Metilación de ADN/genética , Epigenoma/genética , Envejecimiento Saludable/genética , Piel/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Algoritmos , Islas de CpG/genética , Epigenómica/métodos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estado de Salud , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Piel/patología
14.
Mol Nutr Food Res ; 62(23): e1800092, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30350398

RESUMEN

SCOPE: Alterations in DNA methylation patterns are correlated with aging, environmental exposures, and disease pathophysiology; the possibility of reverting or preventing these processes through dietary intervention is gaining momentum. In particular, methyl donors that provide S-adenosyl-methionine for one-carbon metabolism and polyphenols such as flavanols that inhibit the activity of DNA methyltransferases (DNMTs) can be key modifiers of epigenetic patterns. METHODS AND RESULTS: DNA methylation patterns are assessed in publicly available Illumina Infinium 450K methylation datasets from intervention studies with either folic acid + vitamin B12 (GSE74548) or monomeric and oligomeric flavanols (MOF) (GSE54690) in 44 and 13 participants, respectively. Global DNA methylation levels are increased in unmethylated regions such as CpG islands and shores following folic acid + vitamin B12 supplementation and decreased in highly methylated regions, including shelves and open-seas, following intervention with MOF. After supplementation with folic acid + vitamin B12, epigenetic age, estimated by the Horvath "epigenetic clock" model, is reduced in women with the MTHFR 677CC genotype. CONCLUSIONS: The effects of supplementation with folic acid + vitamin B12 and MOF on DNA methylation age are dependent upon gender and MTHFR genotype. Additionally, the findings demonstrate the potential for these dietary factors to modulate global DNA methylation profiles.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Epigénesis Genética , Ácido Fólico/farmacología , Vitamina B 12/farmacología , Adulto , Anciano , Envejecimiento/efectos de los fármacos , Islas de CpG , Suplementos Dietéticos , Epigénesis Genética/efectos de los fármacos , Femenino , Flavonoides/farmacología , Humanos , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda