Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38395698

RESUMEN

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Asunto(s)
Microglía , Receptores Purinérgicos P2X7 , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Ansiedad , Microglía/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
2.
FASEB J ; 38(4): e23475, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334450

RESUMEN

Ankyrin-repeat proteins with a suppressor of cytokine signaling box (ASB) proteins belong to the E3 ubiquitin ligase family. 18 ASB members have been identified whose biological functions are mostly unexplored. Here, we discovered that ASB3 was essential for hepatocellular carcinoma (HCC) development and high ASB3 expression predicted poor clinical outcomes. ASB3 silencing induced HCC cell growth arrest and apoptosis in vitro and in vivo. Liver-specific deletion of Asb3 gene suppressed diethylnitrosamine (DEN)-induced liver cancer development. Mechanistically, ASB3 interacted with death receptor 5 (DR5), which promoted ubiquitination and degradation of DR5. We further showed that ASB3 knockdown stabilized DR5 and increased the sensitivity of liver cancer cells to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a DR5-dependent manner in cellular and in animal models. In summary, we demonstrated that ASB3 promoted ubiquitination and degradation of DR5 in HCC, suggesting the potential of targeting ASB3 to HCC treatment and overcome TRAIL resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Ligandos , Neoplasias Hepáticas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitinación , Humanos
3.
J Transl Med ; 22(1): 503, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802941

RESUMEN

BACKGROUND: Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS: C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS: Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS: The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades por Prión , Animales , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Proteínas PrPSc/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
4.
Cell Commun Signal ; 22(1): 195, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539203

RESUMEN

BACKGROUND: Lung cancer is cancer with the highest morbidity and mortality in the world and poses a serious threat to human health. Therefore, discovering new treatments is urgently needed to improve lung cancer prognosis. Small molecule inhibitors targeting the ubiquitin-proteasome system have achieved great success, in which deubiquitinase inhibitors have broad clinical applications. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. RESULTS: In this study, we identified a small molecule inhibitor of OTUD3, Rolapitant, by computer-aided virtual screening and biological experimental verification from FDA-approved drugs library. Rolapitant inhibited the proliferation of lung cancer cells by inhibiting deubiquitinating activity of OTUD3. Quantitative proteomic profiling indicated that Rolapitant significantly upregulated the expression of death receptor 5 (DR5). Rolapitant also promoted lung cancer cell apoptosis through upregulating cell surface expression of DR5 and enhanced TRAIL-induced apoptosis. Mechanistically, Rolapitant directly targeted the OTUD3-GRP78 axis to trigger endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-DR5 signaling, sensitizing lung cancer cells to TRAIL-induced apoptosis. In the vivo assays, Rolapitant suppressed the growth of lung cancer xenografts in immunocompromised mice at suitable dosages without apparent toxicity. CONCLUSION: In summary, the present study identifies Rolapitant as a novel inhibitor of deubiquitinase OTUD3 and establishes that the OTUD3-GRP78 axis is a potential therapeutic target for lung cancer.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Neoplasias Pulmonares , Compuestos de Espiro , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Proteómica , Proteasas Ubiquitina-Específicas/metabolismo , Apoptosis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
5.
Br J Clin Pharmacol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113190

RESUMEN

AIMS: Clinical data demonstrate that metformin exhibits antiproliferative, proapoptotic and antimetastatic actions. Here, correlative molecular studies were undertaken to determine the roles of transmembrane tumour necrosis factor-related apoptosis-inducing ligand death receptors (DRs) and CD133, a glycoprotein biomarker of breast cancer (BC) stem cells, in the advantageous action of metformin on pathological and clinical outcomes in BC patients on neoadjuvant chemotherapy. METHODS: We randomly assigned 70 nondiabetic BC patients in a 1:1 ratio to either neoadjuvant AC-T chemotherapy (4 cycles of adriamycin 60 mg/m2 and cyclophosphamide 600 mg/m2, followed by 12 cycles of weekly paclitaxel 80 mg/m2) or AC-T with adjunct metformin (850 mg twice/day). The expressions of DR4, DR5 and CD133 were quantified in excised tissue samples with residual tumour cells. RESULTS: The overall clinical response (odds ratio: 22.67 [2.77-185.18], P = .004), breast-conserving surgery (odds ratio: 3.67 [1.303-10.321], P = .014) and pathological complete response (ß = 2.49 ± 1.13 [0.274-4.712], P = .028) rates were significantly improved in the metformin arm. Tissues obtained from the metformin arm had upregulated mRNA expression of DR4 (Mean delta cycle thresholds ± standard error of the mean: 2.68 ± 0.25 vs. 4.87 ± 0.53, P = .0003) and DR5 (0.21 ± 0.25 vs. 4.29 ± 0.95, P = .0004) compared to control arm. The enhanced DR expression negatively correlated with that of CD133 + BC stem cells, which was significantly reduced by metformin at both cytoplasmic/membranous (43.48 vs. 100.00%, P < .0001) and nuclear sites (4.35 vs. 95.00%, P < .0001). CONCLUSION: Metformin improves clinical and pathological responses to neoadjuvant AC-T chemotherapy in BC via prompting directionally opposite changes in DRs (increments) and CD133 + (decrements) expressions. This study was registered in ClinicalTrials.gov (registration number: NCT04170465, https://clinicaltrials.gov/ct2/show/NCT04170465).

6.
Cell Biol Int ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563483

RESUMEN

Daurisoline (DS) is an isoquinoline alkaloid that exerts anticancer activities in various cancer cells. However, the underlying mechanisms through which DS affects the survival of breast cancer cells remain poorly understood. Therefore, the present study was undertaken to investigate the potential anticancer effect of DS on breast cancer cells and reveal the mechanism underlying the enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by DS. Cell counting kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assay were used to evaluate the ability of cell proliferation. Flow cytometry was selected to examine the cell cycle distribution. TUNEL assay was used to detect the cell apoptosis. The protein expression was measured by Western blot analysis. DS was found to reduce the cell viability and suppress the proliferation of MCF-7 and MDA-MB-231 cells by causing G1 phase cell cycle arrest. DS could trigger apoptosis by promoting the cleavage of caspase-8 and PARP. The phosphorylation of ERK, JNK, and p38MAPK was upregulated clearly following DS treatment. Notably, SP600125 (JNK inhibitor) pretreatment significantly abrogated DS-induced PARP cleavage. DS inactivated Akt/mTOR and Wnt/ß-catenin signaling pathway and upregulated the expression of ER stress-related proteins. Additionally, DS amplified TRAIL-caused viability reduction and apoptosis in breast cancer cells. Mechanismly, DS upregulated the protein level of DR4 and DR5, and knockdown of DR5 attenuated the cotreatment-induced cleavage of PARP. Inhibition of JNK could block DS-induced upregulation of DR5. This study provides valuable insights into the mechanisms of DS inhibiting cell proliferation, triggering apoptosis, and enhancing TRAIL sensitivity of breast cancer cells.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38900242

RESUMEN

PURPOSE: Acute myocardial infarction (AMI) is a leading cause of mortality. Neutrophils penetrate injured heart tissue during AMI or ischemia-reperfusion (I/R) injury and produce inflammatory factors, chemokines, and extracellular traps that exacerbate heart injury. Inhibition of the TRAIL-DR5 pathway has been demonstrated to alleviate cardiac ischemia-reperfusion injury in a leukocyte-dependent manner. However, it remains unknown whether TRAIL-DR5 signaling is involved in regulating neutrophil extracellular traps (NETs) release. METHODS: This study used various models to examine the effects of activating the TRAIL-DR5 pathway with soluble mouse TRAIL protein and inhibiting the TRAIL-DR5 signaling pathway using DR5 knockout mice or mDR5-Fc fusion protein on NETs formation and cardiac injury. The models used included a co-culture model involving bone marrow-derived neutrophils and primary cardiomyocytes and a model of myocardial I/R in mice. RESULTS: NETs formation is suppressed by TRAIL-DR5 signaling pathway inhibition, which can lessen cardiac I/R injury. This intervention reduces the release of adhesion molecules and chemokines, resulting in decreased neutrophil infiltration and inhibiting NETs production by downregulating PAD4 in neutrophils. CONCLUSION: This work clarifies how the TRAIL-DR5 signaling pathway regulates the neutrophil response during myocardial I/R damage, thereby providing a scientific basis for therapeutic intervention targeting the TRAIL-DR5 signaling pathway in myocardial infarction.

8.
BMC Immunol ; 24(1): 51, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066482

RESUMEN

Inflammatory bowel disease (IBD) is a common immune-mediated condition with its molecular pathogenesis remaining to be fully elucidated. This study aimed to deepen our understanding of the role of FUT2 in human IBD, by studying a new surrogate gene Sec1, a neighboring gene of Fut2 and Fut1 that co-encodes the α 1,2 fucosyltransferase in mice. CRISPR/Cas9 was used to prepare Sec1 knockout (Sec1-/-) mice. IBD was induced in mice using 3% w/v dextran sulphate sodium. Small interfering RNA (siRNA) was employed to silence Sec1 in murine colon cancer cell lines CT26.WT and CMT93. IBD-related symptoms, colonic immune responses, proliferation and apoptosis of colon epithelial cells were assessed respectively to determine the role of Sec1 in mouse IBD. Impact of Sec1 on the expression of death receptor 5 (DR5) and other apoptosis-associated proteins were determined. Sec1 knockout was found to be associated with deterioration of IBD in mice and elevated immune responses in the colonic mucosa. Silencing Sec1 in CT26.WT and CMT93 cells led to greater secretion of inflammatory cytokines IL-1ß, IL-6 and TNF-α. Cell counting kit 8 (CCK8) assay, flow cytometry and TUNEL detection suggested that Sec1 expression promoted the proliferation of colon epithelial cells, inhibited cell apoptosis, reduced cell arrest in G0/G1 phase and facilitated repair of inflammatory injury. Over-expression of DR5 and several apoptosis-related effector proteins was noticed in Sec1-/- mice and Sec1-silenced CT26.WT and CMT93 cells, supporting a suppressive role of Sec1 in cell apoptosis. Our results depicted important regulatory roles of Sec1 in mouse IBD, further reflecting the importance of FUT2 in the pathogenesis of human IBD.


Asunto(s)
Colitis , Inmunidad Mucosa , Enfermedades Inflamatorias del Intestino , Proteínas Munc18 , Animales , Humanos , Ratones , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Proteínas Munc18/genética , Proteínas Munc18/metabolismo
9.
Apoptosis ; 28(7-8): 1060-1075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060507

RESUMEN

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.


Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Apoptosis , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Quinasa 9 Dependiente de la Ciclina/genética
10.
Cell Commun Signal ; 21(1): 227, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667281

RESUMEN

Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms. Video Abstract.


Asunto(s)
Anoicis , Caspasas , Proteolisis , Mitocondrias , Procesamiento Proteico-Postraduccional
11.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068921

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.


Asunto(s)
Antineoplásicos , Flavonoides , Neoplasias , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ligandos , Neoplasias/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
12.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-38054226

RESUMEN

Glioma cell cultures are used in basic researches of tumor processes, personalized medicine for selecting treatment regimens depending on individual characteristics of patients and pharmacology for assessing the effectiveness of chemotherapy. Suppression of glioma culture growth without reduction of malignancy grade is common. Drug cancellation may be followed by substitution of precursor cells by more malignant clones. Therefore, analysis of culture cell malignancy grade is important. In the future, intraoperative analysis of glioma cell malignancy grade can be used to select individual therapy. OBJECTIVE: We analyzed the relationship between expression of marker genes TUBB3, CD133, CDK4, CDK6, CIRBP, DR4, DR5, EGFR, FGFR, FSHR, GDNF, GFAP, L1CAM, LEF1, MAP2, MDM2, MELK, NANOG, NOTCH2, OCT4, OLIG2, PDGFRA, PDGFA, PDGFB and SOX2 and glioma cell malignancy grade, as well as created appropriate prognostic model. MATERIAL AND METHODS: We analyzed expression of 25 marker genes in 22 samples of human glioma cultures using quantitative real-time PCR. Statistical analysis was performed using the IBM SPSS Statistics 26.0 software. We used the Kolmogorov-Smirnov and Shapiro-Wilk tests to assess distribution normality. Nonparametric Jonckheere-Terpstra and Spearman tests were applied. RESULTS: We obtained a prognostic model for assessing the grade III and IV glioma cell malignancy based on expression of marker genes MDM2, MELK, SOX2, CDK4, DR5 and OCT4. Predictive accuracy was 83% (Akaike information criterion -55.125).


Asunto(s)
Glioma , Humanos , Pronóstico , Glioma/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo , Expresión Génica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/uso terapéutico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/uso terapéutico , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
13.
Med J Islam Repub Iran ; 37: 68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575689

RESUMEN

Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults and accompanies a worse survival. In this study, gene expression levels of 5 key players of apoptosis, including DR4, DR5, FAS, caspase 8, and DNA damage-induced apoptosis suppressor (DDIAS), have been evaluated in AML patients compared with controls, aiming to evaluate their possible role and prognostic impact. Methods: This cross-sectional study was performed in the Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences. A total of 30 newly diagnosed AML cases as well as 30 healthy controls enrolled in the study. Real-time polymerase chain reaction was used to evaluate the expressions of DR4, DR5, FAS, DDIAS, and caspase 8 genes in cases and controls. Other necessary data, including cytogenetic findings, mutations, French-American-British (FAB) classification, and survival, were retrieved from hospital records and by direct contact with patients. Statistical analysis was done by SPSS software. When appropriate, the Mann-Whitney U, Pearson's correlation, and the t tests were utilized. Overall survival (OS) was estimated using the Kaplan-Meier method. Results: The expression of all evaluated genes, including DDIAS (0.89 ± 0.20), DR4 (0.67 ± 0.24), DR5 (0.72 ± 0.24), FAS (0.70 ± 0.25), and Caspase 8 (0.77 ± 0.20) were significantly decreased in AML patients compared with the controls (P < 0.001). Patients with the t (16;16) or inv (16) expressed significantly higher amounts of the FAS gene and those with FLT3 mutation exhibited lower expression of caspase 8. Expression of the evaluated genes showed no significant effect on survival. Conclusion: The expression of DR4, DR5, FAS, and caspase 8 seems to be decreased in AML. Lower expression of these molecules may aid AML cells in avoiding apoptosis because they are involved in the initiation of apoptosis, making them potential targets for treatment.

14.
J Biol Chem ; 296: 100515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33676890

RESUMEN

Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.


Asunto(s)
Citrus/química , Neoplasias del Colon/tratamiento farmacológico , Ciclopentanos/farmacología , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293545

RESUMEN

TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvß3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.


Asunto(s)
Glioblastoma , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Ratones , Animales , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Integrina alfaVbeta3/genética , Línea Celular Tumoral , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis
16.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682540

RESUMEN

In the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials. To enhance the efficacy of TRAIL, we designed the HRH-DR5-B fusion protein based on the DR5-selective mutant variant of TRAIL fused to the anti-angiogenic synthetic peptide HRHTKQRHTALH. Initially low expression of HRH-DR5-B was enhanced by the substitution of E. coli-optimized codons with AT-rich codons in the DNA sequence encoding the first 7 amino acid residues of the HRH peptide. However, the HRH-DR5-B degraded during purification to form two adjacent protein bands on the SDS-PAGE gel. The replacement of His by Ser at position P2 immediately after the initiator Met dramatically minimized degradation, allowing more than 20 mg of protein to be obtained from 200 mL of cell culture. The resulting SRH-DR5-B fusion bound the VEGFR2 and DR5 receptors with high affinity and showed increased cytotoxic activity in 3D multicellular tumor spheroids. SRH-DR5-B can be considered as a promising candidate for therapeutic applications.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis , Línea Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Recombinantes/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
17.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430498

RESUMEN

The role of salicylic acid (SA) on plant responses to biotic and abiotic stresses is well documented. However, the mechanism by which exogenous SA protects plants and its interactions with other phytohormones remains elusive. SA effect, both free and encapsulated (using silica and chitosan capsules), on Arabidopsis thaliana development was studied. The effect of SA on roots and rosettes was analysed, determining plant morphological characteristics and hormone endogenous levels. Free SA treatment affected length, growth rate, gravitropic response of roots and rosette size in a dose-dependent manner. This damage was due to the increase of root endogenous SA concentration that led to a reduction in auxin levels. The encapsulation process reduced the deleterious effects of free SA on root and rosette growth and in the gravitropic response. Encapsulation allowed for a controlled release of the SA, reducing the amount of hormone available and the uptake by the plant, mitigating the deleterious effects of the free SA treatment. Although both capsules are suitable as SA carrier matrices, slightly better results were found with chitosan. Encapsulation appears as an attractive technology to deliver phytohormones when crops are cultivated under adverse conditions. Moreover, it can be a good tool to perform basic experiments on phytohormone interactions.


Asunto(s)
Arabidopsis , Quitosano , Ácido Salicílico/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hormonas
18.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012252

RESUMEN

The uncontrolled proliferation of malignant cells in growing tumors results in the generation of different stressors in the tumor microenvironment, such as nutrient shortage, hypoxia and acidosis, among others, that disrupt endoplasmic reticulum (ER) homeostasis and may lead to ER stress. As a response to ER stress, both normal and tumor cells launch a set of signaling pathways known as the unfolded protein response (UPR) to restore ER proteostasis and maintain cell viability and function. However, under sustained ER stress, an apoptotic cell death process can be induced and this has been the subject of different review articles, although the role of the TRAIL-R2/DR5-activated extrinsic pathway of apoptosis has not yet been thoroughly summarized. In this Review, we provide an updated overview of the molecular mechanisms regulating cell fate decisions in tumor cells undergoing ER stress and discuss the role of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2/DR5) in the final outcome of UPR signaling. Particularly, we focus on the mechanisms controlling cellular FLICE-like inhibitory protein (FLIP) levels in tumor cells undergoing ER stress, which may represent a potential target for therapeutic intervention in cancer.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Respuesta de Proteína Desplegada , Apoptosis , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral
19.
Molecules ; 27(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744931

RESUMEN

Prostaglandin (PG) A2, a cyclopentenone PG, induced apoptosis in both HCT116 and HCT116 p53 -/- cells. Although PGA2-induced apoptosis in HCT116 cells was dependent on the p53-DR5 pathway, the mechanism underlying PGA2-induced apoptosis in HCT116 p53 -/- cells remains unknown. In this study, we observed that PGA2 caused an increase of mRNA expression of DR5 and protein expression even in HCT116 p53 -/- cells, accompanied by caspase-dependent apoptosis. Knockdown of DR5 expression by RNA interference inhibited PGA2-induced apoptosis in HCT116 p53 -/- cells. Parallel to the induction of apoptosis, PGA2 treatment upregulated expression of genes upstream of DR5 such as ATF4 and CHOP. Knockdown of CHOP prevented DR5-dependent cell death as well as the expression of DR5 protein. Furthermore, knockdown of ATF4 by RNA interference decreased both mRNA and protein levels of CHOP and DR5, thereby suppressing PGA2-induced cell death. Consistently, the DR5 promoter activity increased by PGA2 was not stimulated when the CHOP binding site in the DR5 promoter was mutated. These results collectively suggest that PGA2 may induce DR5-dependent apoptosis via the ATF4-CHOP pathway in HCT116 p53 null cells.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis , Línea Celular Tumoral , Células HCT116 , Prostaglandinas A , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , ARN Mensajero , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921748

RESUMEN

Arsenic is one of the most common environmental pollutants eliciting serious public health issues; however, it is also a well-recognized chemotherapeutic agent for acute promyelocytic leukemia. The association between arsenic exposure and lung diseases has been established, but underlying molecular mechanisms are poorly defined. Here we investigated the toxicology of arsenic in airway epithelium. Arsenic rapidly induced the activating transcription factor ATF3 expression through the JNK and p38 pathways. The ATF3-deficient BEAS-2B cells were relatively resistant to apoptosis upon arsenic exposure, indicating a facilitatory role of ATF3 in arsenic-induced apoptosis. We further showed that ATF3 oppositely regulated the transcription of death receptor (DR5) and Bcl2-like 1 (Bcl-xL) by directly binding to the promoter DR5 and Bcl-xL. Altogether, our findings establish ATF3 as a pro-apoptotic protein in arsenic-induced airway epithelial apoptosis through transcriptionally regulating DR5 and Bcl-xL, highlighting the potential of ATF3 as an early and sensitive biomarker for arsenic-caused lung injury.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Arsénico/toxicidad , Bronquios/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Transcripción Activador 3/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda