Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Immunity ; 47(2): 339-348.e4, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28801232

RESUMEN

The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Bacterias/genética , Colitis/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inflamasomas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD , Células Cultivadas , Colitis/inducido químicamente , Colitis/microbiología , Disbiosis/microbiología , Femenino , Antecedentes Genéticos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , ARN Ribosómico 16S/análisis , Receptores de Superficie Celular/genética , Dodecil Sulfato de Sodio
2.
Pharmacol Res ; 195: 106891, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586618

RESUMEN

BACKGROUND: Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS: The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS: iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION: Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Neoplasias Asociadas a Colitis/complicaciones , Neoplasias Asociadas a Colitis/patología , Interleucina-6 , Ratones Endogámicos C57BL , Disbiosis/complicaciones , Linfocitos T CD8-positivos , ARN Ribosómico 16S , Fosfatidilinositol 3-Quinasas , Colitis/patología , Inflamación , Colon/patología , Enfermedades Inflamatorias del Intestino/patología , Inmunidad , Sulfato de Dextran , Modelos Animales de Enfermedad
3.
Pharmacol Res ; 197: 106948, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806602

RESUMEN

The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(ß-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(ß-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(ß-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(ß-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(ß-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Inmunomodulación , Inflamación , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Células Mieloides
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047133

RESUMEN

Inflammatory bowel disease, comprising Crohn's disease (CD) and ulcerative colitis (UC), is often debilitating. The disease etiology is multifactorial, involving genetic susceptibility, microbial dysregulation, abnormal immune activation, and environmental factors. Currently, available drug therapies are associated with adverse effects when used long-term. Therefore, the search for new drug candidates to treat IBD is imperative. The peroxisome proliferator-activated receptor-γ (PPARγ) is highly expressed in the colon. PPARγ plays a vital role in regulating colonic inflammation. 1,8-cineole, also known as eucalyptol, is a monoterpene oxide present in various aromatic plants which possess potent anti-inflammatory activity. Molecular docking and dynamics studies revealed that 1,8-cineole binds to PPARγ and if it were an agonist, that would explain the anti-inflammatory effects of 1,8-cineole. Therefore, we investigated the role of 1,8-cineole in colonic inflammation, using both in vivo and in vitro experimental approaches. Dextran sodium sulfate (DSS)-induced colitis was used as the in vivo model, and tumor necrosis factor-α (TNFα)-stimulated HT-29 cells as the in vitro model. 1,8-cineole treatment significantly decreased the inflammatory response in DSS-induced colitis mice. 1,8-cineole treatment also increased nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus to induce potent antioxidant effects. 1,8-cineole also increased colonic PPARγ protein expression. Similarly, 1,8-cineole decreased proinflammatory chemokine production and increased PPARγ protein expression in TNFα-stimulated HT-29 cells. 1,8-cineole also increased PPARγ promoter activity time-dependently. Because of its potent anti-inflammatory effects, 1,8-cineole may be valuable in treating IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Antiinflamatorios/farmacología , Colitis/metabolismo , Colitis Ulcerosa/metabolismo , Colon/patología , Sulfato de Dextran , Eucaliptol/farmacología , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049744

RESUMEN

Inflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn's disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability. Nerolidol (NED), a naturally occurring sesquiterpene alcohol, has potent anti-inflammatory properties in preclinical models of colon inflammation. In this study, we investigated the effect of NED on MAPKs, NF-κB signaling pathways, and intestine epithelial tight junction physiology using in vivo and in vitro models. The effect of NED on proinflammatory cytokine release and MAPK and NF-κB signaling pathways were evaluated using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. Subsequently, the role of NED on MAPKs, NF-κB signaling, and the intestine tight junction integrity were assessed using DSS-induced colitis and LPS-stimulated Caco-2 cell culture models. Our result indicates that NED pre-treatment significantly inhibited proinflammatory cytokine release, expression of proteins involved in MAP kinase, and NF-κB signaling pathways in LPS-stimulated RAW macrophages and DSS-induced colitis. Furthermore, NED treatment significantly decreased FITC-dextran permeability in DSS-induced colitis. NED treatment enhanced tight junction protein expression (claudin-1, 3, 7, and occludin). Time-dependent increases in transepithelial electrical resistance (TEER) measurements reflect the formation of healthy tight junctions in the Caco-2 monolayer. LPS-stimulated Caco-2 showed a significant decrease in TEER. However, NED pre-treatment significantly prevented the fall in TEER measurements, indicating its protective role. In conclusion, NED significantly decreased MAPK and NF-κB signaling pathways and decreased tight junction permeability by enhancing epithelial tight junction protein expression.


Asunto(s)
Colitis , Sesquiterpenos , Humanos , FN-kappa B/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Lipopolisacáridos/farmacología , Mucosa Intestinal/metabolismo , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sesquiterpenos/farmacología , Proteínas de Uniones Estrechas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos
6.
Eur J Immunol ; 51(6): 1461-1472, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33548071

RESUMEN

Blocking the mevalonate pathway for cholesterol reduction by using statin may have adverse effects including statin-induced colitis. Moreover, one of the predisposing factors for colitis is an imbalanced CD4+ T cell, which can be observed on the complete deletion of HMG-CoA reductase (HMGCR), a target of statins. In this study, we inquired geranylgeranyl pyrophosphate (GGPP) is responsible for maintaining the T-cell homeostasis. Following dextran sulfate sodium (DSS)-induced colitis, simvastatin increased the severity of disease, while cotreatment with GGPP, but not with cholesterol, reversed the disease magnitude. GGPP ameliorated DSS-induced colitis by increasing Treg cells. GGPP amplified Treg differentiation through increased IL-2/STAT 5 signaling. GGPP prenylated Ras protein, a prerequisite for extracellular signal-regulated kinase (ERK) pathway activation, leading to increased IL-2 production. Higher simvastatin dose increased the severity of colitis. GGPP ameliorated simvastatin-increased colitis by increasing Treg cells. Treg cells, which have the capacity to suppress inflammatory T cells and were generated through IL-2/STAT5 signaling, increased IL-2 production through prenylation and activation of the Ras/ERK pathway.


Asunto(s)
Anticolesterolemiantes/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Colitis/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-2/metabolismo , Fosfatos de Poliisoprenilo/uso terapéutico , Simvastatina/administración & dosificación , Linfocitos T Reguladores/inmunología , Animales , Anticolesterolemiantes/efectos adversos , Diferenciación Celular , Células Cultivadas , Colitis/etiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Homeostasis , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Activación de Linfocitos , Ácido Mevalónico/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Simvastatina/efectos adversos
7.
Int Microbiol ; 25(3): 587-603, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35414032

RESUMEN

Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-ß, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos , Animales , Colitis/inducido químicamente , Colitis/terapia , Citocinas , Sulfato de Dextran , Modelos Animales de Enfermedad , Inmunidad , Ratones
8.
Dig Dis Sci ; 67(8): 3662-3671, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34561759

RESUMEN

BACKGROUND: The laminin gamma 1 chain (LMγ1) is abundant along the crypt-villus axis in the intestinal basement membrane. AIMS: We investigated whether a serological biomarker of laminin degradation was associated with disease activity in patients with Crohn's disease (CD) and in rats with dextran sulfate sodium (DSS)-induced colitis. METHODS: Serum samples from CD patients (n = 43), healthy subjects (n = 19), and Sprague Dawley rats receiving 5-6% DSS water for five days and regular drinking water for 11 days were included in this study. The LG1M biomarker, a neo-epitope degradation fragment of the LMγ1 chain generated by matrix metalloproteinases-9 (MMP-9), was measured in serum to estimate the level of laminin degradation. RESULTS: Serum LG1M was elevated in CD patients with active and inactive disease compared to healthy subjects (p < 0.0001). LG1M distinguished CD patients from healthy subjects, with an area under the curve (AUC) of 0.81 (p < 0.0001). Serum LG1M was decreased in DSS rats compared to controls 2 days after DSS withdrawal, and increased upon reversal of the disease. CONCLUSIONS: Increased serum LG1M in active and inactive CD patients supports the evidence of altered LM expression in both inflamed and non-inflamed tissue. Moreover, lower LG1M levels in the early healing phase of DSS-induced colitis may reflect ongoing mucosal repair.


Asunto(s)
Membrana Basal , Colitis , Enfermedad de Crohn , Laminina , Animales , Membrana Basal/patología , Biomarcadores/sangre , Colitis/sangre , Colitis/inducido químicamente , Enfermedad de Crohn/sangre , Enfermedad de Crohn/diagnóstico , Sulfato de Dextran , Humanos , Laminina/sangre , Ratas , Ratas Sprague-Dawley
9.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563399

RESUMEN

Metalloendopeptidase ADAM-Like Decysin 1 (ADAMDEC1) is an anti-inflammatory peptidase that is almost exclusively expressed in the gastrointestinal (GI) tract. We have recently found abundant and selective expression of Adamdec1 in colonic mucosal PDGFRα+ cells. However, the cellular origin for this gene expression is controversial as it is also known to be expressed in intestinal macrophages. We found that Adamdec1 mRNAs were selectively expressed in colonic mucosal subepithelial PDGFRα+ cells. ADAMDEC1 protein was mainly released from PDGFRα+ cells and accumulated in the mucosal layer lamina propria space near the epithelial basement membrane. PDGFRα+ cells significantly overexpressed Adamdec1 mRNAs and protein in DSS-induced colitis mice. Adamdec1 was predominantly expressed in CD45- PDGFRα+ cells in DSS-induced colitis mice, with only minimal expression in CD45+ CD64+ macrophages. Additionally, overexpression of both ADAMDEC1 mRNA and protein was consistently observed in PDGFRα+ cells, but not in CD64+ macrophages found in human colonic mucosal tissue affected by Crohn's disease. In summary, PDGFRα+ cells selectively express ADAMDEC1, which is localized to the colon mucosa layer. ADAMDEC1 expression significantly increases in DSS-induced colitis affected mice and Crohn's disease affected human tissue, suggesting that this gene can serve as a diagnostic and/or therapeutic target for intestinal inflammation and Crohn's disease.


Asunto(s)
Proteínas ADAM , Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Biomarcadores , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/citología , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
10.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557879

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly includes steroids, biological agents and need-based surgery, based on the severity of the disease. Current drug therapy is often associated with adverse effects, which limits its use. Therefore, it necessitates the search for new drug candidates. In this pursuit, phytochemicals take the lead in the search for drug candidates to benefit from IBD treatment. ß-myrcene is a natural phytochemical compound present in various plant species which possesses potent anti-inflammatory activity. Here we investigated the role of ß-myrcene on colon inflammation to explore its molecular targets. We used 2% DSS colitis and TNF-α challenged HT-29 adenocarcinoma cells as in vivo and in vitro models. Our result indicated that the administration of ß-myrcene in dextran sodium sulfate (DSS)-treated mice restored colon length, decreased disease activity index (DAI), myeloperoxidase (MPO) enzyme activity and suppressed proinflammatory mediators. ß-myrcene administration suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways to limit inflammation. ß-myrcene also suppressed mRNA expression of proinflammatory chemokines in tumor necrosis factor-α (TNF-α) challenged HT-29 adenocarcinoma cells. In conclusion, ß-myrcene administration suppresses colon inflammation by inhibiting MAP kinases and NF-κB pathways.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Colon/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Inflamación/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
11.
Scand J Gastroenterol ; 56(7): 791-805, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33941035

RESUMEN

Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.


Asunto(s)
Colitis , Mucosa Intestinal , Humanos , Organoides , Factor Trefoil-2 , Cicatrización de Heridas
12.
Toxicol Pathol ; 49(4): 897-904, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33576323

RESUMEN

Inflammatory bowel disease (IBD) is a complex disease which leads to life-threatening complications and decreased quality of life. The dextran sulfate sodium (DSS) colitis model in mice is known for rapid screening of candidate compounds. Efficacy assessment in this model relies partly on microscopic semiquantitative scoring, which is time-consuming and subjective. We hypothesized that deep learning artificial intelligence (AI) could be used to identify acute inflammation in H&E-stained sections in a consistent and quantitative manner. Training sets were established using ×20 whole slide images of the entire colon. Supervised training of a Convolutional Neural Network (CNN) was performed using a commercial AI platform to detect the entire colon tissue, the muscle and mucosa layers, and 2 categories within the mucosa (normal and acute inflammation E1). The training sets included slides of naive, vehicle-DSS and cyclosporine A-DSS mice. The trained CNN was able to segment, with a high level of concordance, the different tissue compartments in the 3 groups of mice. The segmented areas were used to determine the ratio of E1-affected mucosa to total mucosa. This proof-of-concept work shows promise to increase efficiency and decrease variability of microscopic scoring of DSS colitis when screening candidate compounds for IBD.


Asunto(s)
Colitis , Aprendizaje Profundo , Animales , Inteligencia Artificial , Colitis/inducido químicamente , Colon , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Calidad de Vida
13.
Proc Natl Acad Sci U S A ; 115(40): E9362-E9370, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224451

RESUMEN

Defective and/or delayed wound healing has been implicated in the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease (IBD). The resolution of inflammation is particularly important in mucosal organs, such as the gut, where restoration of epithelial barrier function is critical to reestablish homeostasis with the interfacing microenvironment. Although IL-33 and its receptor ST2/ILRL1 are known to be increased and associated with IBD, studies using animal models of colitis to address the mechanism have yielded ambiguous results, suggesting both pathogenic and protective functions. Unlike those previously published studies, we focused on the functional role of IL-33/ST2 during an extended (2-wk) recovery period after initial challenge in dextran sodium sulfate (DSS)-induced colitic mice. Our results show that during acute, resolving colitis the normal function of endogenous IL-33 is protection, and the lack of either IL-33 or ST2 impedes the overall recovery process, while exogenous IL-33 administration during recovery dramatically accelerates epithelial restitution and repair, with concomitant improvement of colonic inflammation. Mechanistically, we show that IL-33 stimulates the expression of a network of microRNAs (miRs) in the Caco2 colonic intestinal epithelial cell (IEC) line, especially miR-320, which is increased by >16-fold in IECs isolated from IL-33-treated vs. vehicle-treated DSS colitic mice. Finally, IL-33-dependent in vitro proliferation and wound closure of Caco-2 IECs is significantly abrogated after specific inhibition of miR-320A. Together, our data indicate that during acute, resolving colitis, IL-33/ST2 plays a crucial role in gut mucosal healing by inducing epithelial-derived miR-320 that promotes epithelial repair/restitution and the resolution of inflammation.


Asunto(s)
Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucina-33/metabolismo , Mucosa Intestinal/fisiología , MicroARNs/metabolismo , Regeneración , Enfermedad Aguda , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Sulfato de Dextran/toxicidad , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Ratones , Ratones Noqueados , MicroARNs/genética
14.
Proc Natl Acad Sci U S A ; 115(46): 11802-11807, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373817

RESUMEN

Immunomodulatory drugs (IMiDs), including thalidomide derivatives such as lenalidomide and pomalidomide, offer therapeutic benefit in several hematopoietic malignancies and autoimmune/inflammatory diseases. However, it is difficult to study the IMiD mechanism of action in murine disease models because murine cereblon (CRBN), the substrate receptor for IMiD action, is resistant to some of IMiDs therapeutic effects. To overcome this difficulty, we generated humanized cereblon (CRBNI391V) mice thereby providing an animal model to unravel complex mechanisms of action in a murine physiological setup. In our current study, we investigated the degradative effect toward IKZF1 and CK-1α, a target substrate of IMiDs. Unlike WT mice which were resistant to lenalidomide and pomalidomide, T lymphocytes from CRBNI391V mice responded with a higher degree of IKZF1 and CK-1α protein degradation. Furthermore, IMiDs resulted in an increase in IL-2 among CRBNI391V mice but not in the WT group. We have also tested a thalidomide derivative, FPFT-2216, which showed an inhibitory effect toward IKZF1 protein level. As opposed to pomalidomide, FPFT-2216 and lenalidomide degrades CK-1α. Additionally, we assessed the potential therapeutic effects of IMiDs in dextran sodium sulfate (DSS)-induced colitis. In both WT and humanized mice, lenalidomide showed a significant therapeutic effect in the DSS model of colitis, while the effect of pomalidomide was less pronounced. Thus, while IMiDs' degradative effect on IKZF1 and CK-1α, and up-regulation of IL-2, is dependent on CRBN, the therapeutic benefit of IMiDs in a mouse model of inflammatory bowel disease occurs through a CRBN-IMiD binding region independent pathway.


Asunto(s)
Inmunomodulación/efectos de los fármacos , Inmunomodulación/fisiología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Animales , Humanos , Factor de Transcripción Ikaros/efectos de los fármacos , Factor de Transcripción Ikaros/metabolismo , Factores Inmunológicos/metabolismo , Ratones , Modelos Animales , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445403

RESUMEN

Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.


Asunto(s)
Bacterias/clasificación , Colitis/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Microbiota/efectos de los fármacos , Silicatos/administración & dosificación , Administración Oral , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Peso Corporal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , ADN Bacteriano/genética , ADN Ribosómico/genética , Heces/microbiología , Masculino , Ratones Endogámicos BALB C , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Silicatos/farmacología , Proteínas de Uniones Estrechas/metabolismo , Resultado del Tratamiento
16.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466682

RESUMEN

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1ß and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1ß via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk.


Asunto(s)
Colitis/genética , Aditivos Alimentarios/efectos adversos , Enfermedades Inflamatorias del Intestino/genética , Células Mieloides/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Titanio/efectos adversos , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo
17.
Inflammopharmacology ; 29(1): 237-251, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32594364

RESUMEN

Ulcerative colitis (UC) is a chronic and relapsing inflammatory disorder, which has an increased incidence worldwide. The NLRP3 inflammasome has recently been assigned as a promising target for several inflammatory diseases including bowel inflammation. We aimed to investigate the potential complementary effects of combined therapy of metformin and MCC950 in dextran sodium sulfate (DSS)-induced colitis in rats. Metformin/MCC950 mitigated colon shortening, disease activity index (DAI), and macroscopic damage index (MDI). It also improved the colon histology picture and reduced the inflammation score. In addition, metformin/MCC950 augmented the antioxidant defense machinery and attenuated the myeloperoxidase (MPO) activity. Moreover, the levels of the pro-inflammatory mediators tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) were reduced. This pharmacological activity might be attributed to interrupting the priming signal of the NLRP3 inflammasome activation through inactivating Toll-like receptor 4 (TLR4)/nuclear transcription factor kappa-B (NF-κB) signalling (effect of metformin) as well as interrupting the activation signal through potent inhibition of NLRP3 expression and caspase-1 (effect of MCC950). As a result, significant inhibition of the production of the bioactive IL-1ß and IL-18 occurred, and hence the pyroptosis process was inhibited. Moreover, the metformin/MCC950 leads to the induction of autophagy by AMP-activated protein kinase (AMPK)-dependent mechanisms leading to the accumulation of Beclin-1 and a substantial decline in the levels of p62 SQSTM1 (effect of metformin). The observed impeding effect on HSP90 along with inducing autophagy (effect of metformin) suggests that NLRP3 is prone to autophagic degradation. In conclusion, we reveal that the combination of metformin with MCC950 has a protective role in DSS-induced colitis and might become a candidate in a promising approach for the future treatment of human UC.


Asunto(s)
Autofagia/efectos de los fármacos , Colitis/prevención & control , Furanos/farmacología , Indenos/farmacología , Metformina/farmacología , Sulfonamidas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Furanos/administración & dosificación , Proteínas HSP90 de Choque Térmico/metabolismo , Indenos/administración & dosificación , Masculino , Metformina/administración & dosificación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-Dawley , Sulfonamidas/administración & dosificación
18.
Inflammopharmacology ; 28(4): 851-868, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31865495

RESUMEN

BACKGROUND: Artemisinin and its derivatives are known to exert immunosuppressive effects through modulating adaptive immunity. We investigated a novel role of artesunate in regulating innate immunity, including both macrophages (MΦ) and dendritic cells (DCs), which are known to involve in DSS-induced colitis. METHODS: Effects of artesunate on innate immunity were extensively evaluated, both in vivo using DSS-colitis model with WT and T cell-deficient RAG mice (RAG-/-) and in vitro using cell culture models, including in-depth analyses of MΦ/DC apoptosis and cytokine expression by flow cytometry, Western blot, or immunohistology. RESULTS: Unexpectedly, artesunate significantly ameliorated the DSS colitis of both WT and RAG1-/- mice with similar potency, suggesting a mechanism that involves primarily innate rather than adaptive immunity. In vivo mechanistic studies revealed that artesunate markedly induced apoptosis of lamina propria MΦs and DCs and suppressed mucosal TNF-α and IL-12p70 in DSS-colitis. In vitro, artesunate potently induced a dose- and time-dependent apoptosis of murine bone marrow-derived DCs and human THP-1 MΦs, through the caspases-9-mediated intrinsic pathway. Artesunate significantly decreased the secretion of IL-12p40/70 by DCs and TNF-α by MΦs. Furthermore, a combination of artesunate with an immunomodulator (methotrexate/triptolide/azathioprine) exhibited superior potency in promoting apoptosis of MΦs than any individual drug alone. CONCLUSIONS: The immunomodulatory mechanism of artesunate in colitis involves a novel and potent induction of the intrinsic apoptosis pathway of proliferating MΦs and DCs and suppression of IL-12 and TNF-α. Artemisinin and its derivatives are promising new therapeutic alternatives for IBD, either alone or in combination with other immunomodulators.


Asunto(s)
Artemisia annua/química , Artesunato/farmacología , Productos Biológicos/farmacología , Colitis/tratamiento farmacológico , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Colitis/inducido químicamente , Colitis/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Interleucina-12/metabolismo , Mucosa Intestinal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células THP-1/efectos de los fármacos , Células THP-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Toxicol Mech Methods ; 30(2): 107-114, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31532267

RESUMEN

In standard nonclinical drug safety evaluation studies, limitations exist in predicting the clinical risk of a drug based only on data from healthy animals. To obtain more comprehensive toxicological information on norisoboldine (NOR), we conducted an exploratory study using C57BL/6 mice in addition to healthy mice as models of dextran sodium sulfate (DSS) colitis to evaluate the safety of NOR. The healthy mice and DSS colitis mice were exposed to 30 or 90 mg NOR/kg body weight or water for 15 days. Compared with the model control group, 90 mg/kg of NOR aggravated the symptoms and colonic lesions of the DSS colitis mice and even caused death in two animals. No significant adverse effects were observed in the healthy mice. These different toxic reactions to NOR in the healthy and DSS colitis mice indicate that NOR toxicity varies by status among animals and suggests that the DSS colitis mouse model may be more susceptible, accurate and comprehensive in evaluating the safety of NOR. In conclusion, 90 mg/kg of NOR may be safe for healthy mice but not for DSS colitis mice. The DSS colitis mouse model, with many features similar to those of human colitis patients, may be a novel choice to counteract the deficiencies of using healthy mice to evaluate the safety of anti-inflammatory bowel disease (IBD) drugs, and further research is required.


Asunto(s)
Alcaloides/toxicidad , Colitis/inducido químicamente , Colon/efectos de los fármacos , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Colitis/sangre , Colitis/patología , Colon/inmunología , Colon/patología , Relación Dosis-Respuesta a Droga , Etiquetado Corte-Fin in Situ , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Análisis de Supervivencia
20.
Arch Biochem Biophys ; 671: 185-195, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326516

RESUMEN

Variations in Nrf-2 and NF-κB expression profiles have been reported in ulcerative colitis (UC), in which an interplay between these two critical pathways has been identified. The therapeutic potential of angiotensin receptor blockers (ARBs) for oxidative damage and inflammation has recently received considerable attention. Dextran sodium sulfate (DSS)-induced colitis in rats closely resembles human UC and is associated with oxidative damage and the production of pro-inflammatory mediators. Therefore, we aimed to investigate the effect of orally administered telmisartan (TEL) (1.75, 3.5 and 7 mg/kg) in a rat model of DSS-induced colitis. Our study revealed that TEL, particularly at 7 mg/kg, alleviated tissue injury and inflammatory signs upon histological analysis and enhanced survival and recovery during DSS-induced colitis. The levels of colonic IL-1ß, IL-6, TNF-α and serum C-reactive protein (CRP) were downregulated, while the level of colonic IL-10 was upregulated. TEL repressed DSS-induced neutrophil infiltration and improved the colonic antioxidant defence machinery. TEL inhibited apoptotic signalling as indicated by lower caspase 3 expression, increased CD36 gene expression and exhibited PPARγ agonistic activity. In addition, TEL downregulated gene expression and inhibited phosphorylation of the NF-κB p65 subunit. On the other hand, TEL upregulated the gene expression of Nrf-2 and HO-1. We concluded that TEL, besides its PPARγ agonistic activity, acted as a modulator of Nrf-2/NF-κB interactions and exhibited anti-apoptotic activity after tissue damage and that PPARγ and CD36 might play a critical role in the pathogenesis of murine colitis. Therefore, our findings suggest that further investigations on human IBDs are warranted.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , PPAR gamma/agonistas , Transducción de Señal/efectos de los fármacos , Telmisartán/uso terapéutico , Factor de Transcripción ReIA/metabolismo , Animales , Antígenos CD36/genética , Colitis Ulcerosa/inducido químicamente , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran , Hemo Oxigenasa (Desciclizante)/genética , Masculino , Factor 2 Relacionado con NF-E2/genética , Peroxidasa/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda