Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2204577119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969739

RESUMEN

Neurodegeneration arising from aging, injury, or diseases has devastating health consequences. Whereas neuronal survival and axon degeneration have been studied extensively, much less is known about how neurodegeneration affects dendrites, in part due to the limited assay systems available. To develop an assay for dendrite degeneration and repair, we used photo-switchable caspase-3 (caspase-Light-Oxygen-Voltage-sensing [caspase-LOV]) in peripheral class 4 dendrite arborization (c4da) neurons to induce graded neurodegeneration by adjusting illumination duration during development and adulthood in Drosophila melanogaster. We found that both developing and mature c4da neurons were able to survive while sustaining mild neurodegeneration induced by moderate caspase-LOV activation. Further, we observed active dendrite addition and dendrite regeneration in developing and mature c4da neurons, respectively. Using this assay, we found that the mouse Wallerian degeneration slow (WldS) protein can protect c4da neurons from caspase-LOV-induced dendrite degeneration and cell death. Furthermore, our data show that WldS can reduce dendrite elimination without affecting dendrite addition. In summary, we successfully established a photo-switchable assay system in both developing and mature neurons and used WldS as a test case to study the mechanisms underlying dendrite regeneration and repair.


Asunto(s)
Dendritas/metabolismo , Drosophila melanogaster , Animales , Caspasas/metabolismo , Técnicas Citológicas/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ratones , Neuronas/metabolismo , Degeneración Walleriana/metabolismo
2.
Dev Biol ; 497: 18-25, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870669

RESUMEN

Unlike many cell types, neurons are not typically replaced if damaged. Therefore, regeneration of damaged cellular domains is critical for maintenance of neuronal function. While axon regeneration has been documented for several hundred years, it has only recently become possible to determine whether neurons respond to dendrite removal with regeneration. Regrowth of dendrite arbors has been documented in invertebrate and vertebrate model systems, but whether it leads to functional restoration of a circuit remains unknown. To test whether dendrite regeneration restores function, we used larval Drosophila nociceptive neurons. Their dendrites detect noxious stimuli to initiate escape behavior. Previous studies of Drosophila sensory neurons have shown that dendrites of single neurons regrow after laser severing. We removed dendrites from 16 neurons per animal to clear most of the dorsal surface of nociceptive innervation. As expected, this reduced aversive responses to noxious touch. Surprisingly, behavior was completely restored 24 â€‹h after injury, at the stage when dendrite regeneration has begun, but the new arbor has only covered a small portion of its former territory. This behavioral recovery required regenerative outgrowth as it was eliminated in a genetic background in which new growth is blocked. We conclude that dendrite regeneration can restore behavior.


Asunto(s)
Axones , Proteínas de Drosophila , Animales , Axones/metabolismo , Dendritas/metabolismo , Regeneración Nerviosa/fisiología , Drosophila/metabolismo , Neuronas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Genes Dev ; 30(15): 1776-89, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542831

RESUMEN

Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.


Asunto(s)
Drosophila/crecimiento & desarrollo , Regeneración , Animales , Dendritas/fisiología , Fenómenos Electromagnéticos , Células Epidérmicas , Epidermis/crecimiento & desarrollo , Larva , Neurogénesis/fisiología , Neuroglía/metabolismo
4.
J Stroke Cerebrovasc Dis ; 33(11): 107636, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346661

RESUMEN

PURPOSE: To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS: Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS: Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION: Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.

5.
Dev Biol ; 488: 114-119, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644253

RESUMEN

Axon regeneration in response to injury has been documented in many animals over several hundred years. In contrast, how neurons respond to dendrite injury has been examined only in the last decade. So far, dendrite regeneration after injury has been documented in invertebrate model systems, but has not been assayed in a vertebrate. In this study, we use zebrafish motor neurons to track neurons after dendrite injury. We address two major gaps in our knowledge of dendrite regeneration: 1) whether post-synaptic dendrites can regenerate and 2) whether vertebrate dendrites can regenerate. We find that motor neurons survive laser microsurgery to remove one or all dendrites. Outgrowth of new dendrites typically initiated one to three days after injury, and a new, stable dendrite arbor was in place by five days after injury. We conclude that zebrafish motor neurons have the capacity to regenerate a new dendrite arbor.


Asunto(s)
Dendritas , Regeneración de la Medula Espinal , Animales , Axones , Dendritas/fisiología , Neuronas Motoras , Regeneración Nerviosa/fisiología , Médula Espinal , Pez Cebra
6.
Dev Biol ; 465(2): 108-118, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32687893

RESUMEN

Neurons extend dendrites and axons to receive and send signals. If either type of process is removed, the cell cannot function. Rather than undergoing cell death, some neurons can regrow axons and dendrites. Axon and dendrite regeneration have been examined separately and require sensing the injury and reinitiating the correct growth program. Whether neurons in vivo can sense and respond to simultaneous axon and dendrite injury with polarized regeneration has not been explored. To investigate the outcome of simultaneous axon and dendrite damage, we used a Drosophila model system in which neuronal polarity, axon regeneration, and dendrite regeneration have been characterized. After removal of the axon and all but one dendrite, the remaining dendrite was converted to a process that had a long unbranched region that extended over long distances and a region where shorter branched processes were added. These observations suggested axons and dendrites could regrow at the same time. To further test the capacity of neurons to implement polarized regeneration after axon and dendrite damage, we removed all neurites from mature neurons. In this case a long unbranched neurite and short branched neurites were regrown from the stripped cell body. Moreover, the long neurite had axonal plus-end-out microtubule polarity and the shorter neurites had mixed polarity consistent with dendrite identity. The long process also accumulated endoplasmic reticulum at its tip like regenerating axons. We conclude that neurons in vivo can respond to simultaneous axon and dendrite injury by initiating growth of a new axon and new dendrites.


Asunto(s)
Axones/metabolismo , Dendritas/metabolismo , Microtúbulos/metabolismo , Animales , Axones/patología , Dendritas/patología , Drosophila melanogaster , Femenino , Masculino
7.
Prog Neurobiol ; 239: 102635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825174

RESUMEN

Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.


Asunto(s)
Calcio , Dendritas , Regeneración Nerviosa , Dendritas/metabolismo , Dendritas/fisiología , Animales , Calcio/metabolismo , Regeneración Nerviosa/fisiología , Humanos , Ratones , Canales de Potasio de Rectificación Interna/metabolismo , Ratones Transgénicos
8.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548333

RESUMEN

PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Dendritas , Regeneración Nerviosa , Animales , Caenorhabditis elegans/fisiología , Dendritas/fisiología , Regeneración Nerviosa/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Recuperación de la Función/fisiología , Células Receptoras Sensoriales/fisiología , Axotomía , Tacto/fisiología , Animales Modificados Genéticamente , Axones/fisiología , Quinasas Quinasa Quinasa PAM
9.
Neuroinformatics ; 19(4): 703-717, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34342808

RESUMEN

Dendrites shape inputs and integration of depolarization that controls neuronal activity in the nervous system. Neuron pathologies can damage dendrite architecture and cause abnormalities in morphologies after injury. Dendrite regeneration can be quantified by various parameters, including total dendrite length and number of dendrite branches using manual or automated image analysis approaches. However, manual quantification is tedious and time consuming and automated approaches are often trained using wildtype neurons, making them poorly suited for analysis of genetically manipulated or injured dendrite arbors. In this study, we tested how well automated image analysis software performed on class IV Drosophila neurons, which have several hundred individual dendrite branches. We applied each software to automatically quantify features of uninjured neurons and neurons that regenerated new dendrites after injury. Regenerated arbors exhibit defects across multiple features of dendrite morphology, which makes them challenging for automated pipelines to analyze. We compared the performances of three automated pipelines against manual quantification using Simple Neurite Tracer in ImageJ: one that is commercially available (Imaris) and two developed by independent research groups (DeTerm and Tireless Tracing Genie). Out of the three software tested, we determined that Imaris is the most efficient at reconstructing dendrite architecture, but does not accurately measure total dendrite length even after intensive manual editing. Imaris outperforms both DeTerm and Tireless Tracing Genie for counting dendrite branches, and is better able to recreate previous conclusions from this same dataset. This thorough comparison of strengths and weaknesses of each software demonstrates their utility for analyzing regenerated neuron phenotypes in future studies.


Asunto(s)
Dendritas , Drosophila , Animales , Neuritas , Neuronas , Programas Informáticos
10.
J Alzheimers Dis ; 77(3): 949-960, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804096

RESUMEN

Numerous experimental and postmortem studies have increasingly reported dystrophic axons and dendrites, and alterations of dendritic spine morphology and density in the hippocampus as prominent changes in the early stages of Alzheimer's disease (AD). Furthermore, these alterations tend to correlate well with the progressive cognitive decline observed in AD. For these reasons, and because these neurite structures have a capacity to re-grow, re-establish lost connections, and are critical for learning and memory, there is compelling evidence to suggest that therapeutic interventions aimed at preventing their degradation or promoting their regrowth may hold tremendous promise in preventing the progression of AD. In this regard, collapsin response mediator proteins (CRMPs), a family of phosphoproteins playing a major role in axon guidance and dendritic growth, are especially interesting. The roles these proteins play in neurons and immune cells are reviewed here.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Axones/efectos de los fármacos , Axones/inmunología , Axones/metabolismo , Dendritas/efectos de los fármacos , Dendritas/inmunología , Dendritas/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/inmunología , Factores Inmunológicos/metabolismo , Neuritas/efectos de los fármacos , Neuritas/inmunología , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/metabolismo , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo
11.
Neural Regen Res ; 12(5): 687-691, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28616017

RESUMEN

The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans (CSPGs) inhibit plasticity and regeneration in the adult central nervous system (CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule (HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate (CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma (PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda