Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Nanobiotechnology ; 22(1): 150, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575923

RESUMEN

Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales , Pulpa Dental , Células Madre , Diferenciación Celular , Regeneración , ADN/metabolismo , Proliferación Celular/fisiología
2.
Mol Ther ; 30(10): 3193-3208, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35538661

RESUMEN

Extracellular vesicles (EVs) derived from living cells play important roles in donor cell-induced recipient tissue regeneration. Although numerous studies have found that cells undergo apoptosis after implantation in an ischemic-hypoxic environment, the roles played by the EVs released by apoptotic cells are largely unknown. In this study, we obtained apoptotic vesicles (apoVs) derived from human deciduous pulp stem cells and explored their effects on the dental pulp regeneration process. Our work showed that apoVs were ingested by endothelial cells (ECs) and elevated the expression of angiogenesis-related genes, leading to pulp revascularization and tissue regeneration. Furthermore, we found that, at the molecular level, apoV-carried mitochondrial Tu translation elongation factor was transported and regulated the angiogenic activation of ECs via the transcription factor EB-autophagy pathway. In a beagle model of dental pulp regeneration in situ, apoVs recruited endogenous ECs and facilitated the formation of dental-pulp-like tissue rich in blood vessels. These findings revealed the significance of apoptosis in tissue regeneration and demonstrated the potential of using apoVs to promote angiogenesis in clinical applications.


Asunto(s)
Pulpa Dental , Vesículas Extracelulares , Animales , Autofagia , Perros , Células Endoteliales , Humanos , Factores de Elongación de Péptidos , Regeneración , Factores de Transcripción
3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139310

RESUMEN

The present challenge in dental pulp tissue engineering scaffold materials lies in the development of tissue-specific scaffolds that are conducive to an optimal regenerative microenvironment and capable of accommodating intricate root canal systems. This study utilized porcine dental pulp to derive the decellularized extracellular matrix (dECM) via appropriate decellularization protocols. The resultant dECM was dissolved in an acid pepsin solution to form dECM hydrogels. The analysis encompassed evaluating the microstructure and rheological properties of dECM hydrogels and evaluated their biological properties, including in vitro cell viability, proliferation, migration, tube formation, odontogenic, and neurogenic differentiation. Gelatin methacrylate (GelMA) hydrogel served as the control. Subsequently, hydrogels were injected into treated dentin matrix tubes and transplanted subcutaneously into nude mice to regenerate dental pulp tissue in vivo. The results showed that dECM hydrogels exhibited exceptional injectability and responsiveness to physiological temperature. It supported the survival, odontogenic, and neurogenic differentiation of dental pulp stem cells in a 3D culture setting. Moreover, it exhibited a superior ability to promote cell migration and angiogenesis compared to GelMA hydrogel in vitro. Additionally, the dECM hydrogel demonstrated the capability to regenerate pulp-like tissue with abundant blood vessels and a fully formed odontoblast-like cell layer in vivo. These findings highlight the potential of porcine dental pulp dECM hydrogel as a specialized scaffold material for dental pulp regeneration.


Asunto(s)
Matriz Extracelular Descelularizada , Hidrogeles , Ratones , Animales , Porcinos , Hidrogeles/farmacología , Hidrogeles/química , Pulpa Dental , Ratones Desnudos , Regeneración , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Matriz Extracelular
4.
Int Endod J ; 55 Suppl 2: 446-455, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218576

RESUMEN

With advances in knowledge and treatment options, pulp regeneration is now a clear objective in clinical dental practice. For this purpose, many methodologies have been developed in attempts to address the putative questions raised both in research and in clinical practice. In the first part of this review, laboratory-based methods will be presented, analysing the advantages, disadvantages, and benefits of cell culture methodologies and ectopic/semiorthotopic animal studies. This will also demonstrate the need for alignment between two-dimensional and three-dimensional laboratory techniques to accomplish the range of objectives in terms of cell responses and tissue differentiation. The second part will cover observations relating to orthotopic animal studies, describing the current models used for this purpose and how they contribute to the translation of regenerative techniques to the clinic.


Asunto(s)
Pulpa Dental , Regeneración , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Modelos Biológicos , Regeneración/fisiología , Ingeniería de Tejidos/métodos
5.
Odontology ; 110(4): 726-734, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35471745

RESUMEN

Scaffolds are crucial elements for dental pulp regeneration. Most of the currently used scaffolds in regenerative endodontic procedures (REPs) are unsuitable for chairside clinical use. This study aimed to evaluate the effect of an injectable synthetic scaffold (Restylane Lyft) on human bone marrow mesenchymal stem cell (hBMSC) viability, proliferation, and osteo/dentinogenic differentiation in a regenerative endodontic organotype model (REM). hBMSC were loaded in an REM either alone (hBMSC group) or mixed with the Restylane Lyft scaffold (Restylane/hBMSC group) and cultured in basal culture medium (n = 9/group). hMSC on culture plates served as controls. Cell viability and proliferation were measured using AlamarBlue assay. The loaded REM was cultured in an osteogenic differentiation medium to measure alkaline phosphatase activity (ALP) and examine the expression of the osteo/dentinogenic markers using real-time reverse transcriptase polymerase chain reaction. Cell viability in all groups increased significantly over 5 days. The Restylane/hBMSC group showed significantly higher ALP activity and dentin sialophosphoprotein, osteocalcin, and bone sialoprotein genes expression than the hBMSC and the control groups. Restylane Lyft, a hyaluronic acid (HA) injectable, FDA-approved hydrogel, maintained cell viability and proliferation and promoted osteo/dentinogenic differentiation of hBMSC when cultured in an REM. Henceforth, it could be a promising chairside scaffold material for REPs.


Asunto(s)
Hidrogeles , Endodoncia Regenerativa , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental , Humanos , Ácido Hialurónico/análogos & derivados , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Osteogénesis , Regeneración , Ingeniería de Tejidos/métodos , Andamios del Tejido
6.
Int Endod J ; 54(8): 1300-1316, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33709438

RESUMEN

AIM: To investigate the vascularization capacity of a decellularized dental pulp matrix (DDP) of bovine origin seeded with human dental pulp stem cells (hDPSCs) in vitro and to present preliminary in vivo findings. METHODOLOGY: Bovine dental pulps were decellularized and then analysed using histological staining and DNA quantification. The resultant DDPs were characterized using immunohistochemical staining for the retention of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF-2). Furthermore, DDPs were recellularized with hDPSCs and analysed histologically. The expression of markers involved in angiogenesis by hDPSCs colonizing the DDPs was assessed in vitro. A preliminary in vivo study was then conducted in which hDPSCs-seeded and unseeded DDPs were inserted in debrided human premolars root slices and implanted subcutaneously in immunodeficient mice. Samples were retrieved after 30 days and analysed using histological and immunohistochemical staining. The independent samples t-test, analysis of variance and a Kruskal-Wallis test were used to analyse the quantitative data statistically depending on the group numbers and normality of data distribution. The difference between the groups was considered significant when the P-value was less than 0.05. RESULTS: Acellular dental pulp matrices were generated following bovine dental pulp decellularization. Evaluation of the developed DDPs revealed a significant DNA reduction (P < 0.0001) with preservation of the native histoarchitecture and vasculature and retention of VEGF-A and FGF-2. Upon recellularization of the DDPs with hDPSCs, the in vitro analyses revealed cell engraftment with progressive repopulation of DDPs' matrices and vasculature and with enhanced expression of markers involved in angiogenesis. In vivo implantation of root slices with hDPSCs-seeded DDPs revealed apparent vascularization enhancement as compared to the unseeded DDP group (P < 0.0001). CONCLUSIONS: The developed decellularized dental pulp matrix had pro-angiogenic properties characterized by the retention of native vasculature and angiogenic growth factors. Seeding of hDPSCs into the DDP led to progressive repopulation of the vasculature, enhanced expression of markers involved in angiogenesis in hDPSCs and improved in vivo vascularization capacity. The se suggest that a combination of DDP and hDPSCs have the potential to provide a promising vascularization promoting strategy for dental pulp regeneration.


Asunto(s)
Pulpa Dental , Factor A de Crecimiento Endotelial Vascular , Animales , Bovinos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Regeneración , Células Madre , Raíz del Diente
7.
Sci Technol Adv Mater ; 22(1): 571-582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408551

RESUMEN

Much research has been conducted on fabricating biomimetic biomaterials in vitro. Tissue engineering approaches are often conducted by combining cells, scaffolds, and growth factors. However, the degradation rate of scaffolds is difficult to control and the degradation byproducts occasionally limit tissue regeneration. To overcome these issues, we have developed a novel system using a thermo-responsive hydrogel that forms scaffold-free, three-dimensional (3D) cell constructs with arbitrary size and morphology. 3D cell constructs prepared using bone marrow-derived stromal stem cells (BMSCs) exhibited self-organizing ability and formed bone-like tissue with endochondral ossification. Endothelial cells were then introduced into the BMSC construct and a vessel-like structure was formed within the constructs. Additionally, the bone formation ability was promoted by endothelial cells and cell constructs could be freeze-dried to improve their clinical application. A pre-treatment with specific protein protectant allowed for the fabrication of novel bone substitutes composed only of cells. This 3D cell construct technology using thermo-responsive hydrogels was then applied to other cell species. Cell constructs composed of dental pulp stem cells were fabricated, and the resulting construct regenerated pulp-like tissue within a human pulpless tooth. In this review, we demonstrate the approaches for the in vitro fabrication of bone and dental pulp-like tissue using thermo-responsive hydrogels and their potential applications.

8.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445703

RESUMEN

Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.


Asunto(s)
Pulpa Dental/metabolismo , Pulpa Dental/fisiología , Regeneración Tisular Guiada Periodontal/métodos , Animales , Humanos , Células Madre Mesenquimatosas/metabolismo , Regeneración/fisiología , Estudios Retrospectivos , Tratamiento del Conducto Radicular/métodos , Células Madre/metabolismo , Ingeniería de Tejidos/métodos
9.
Biochem Biophys Res Commun ; 529(4): 1158-1164, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819580

RESUMEN

Dental pulp, plays an indispensable role in maintaining homeostasis of the tooth. Pulp necrosis always causes tooth nutrition deficiency and abnormal root development, which leads to tooth discoloration, fracture or even loss. Our previous study showed implantation of autologous SHED could regenerate functional dental pulp. However, the detailed mechanism of the implanted SHED participating in dental pulp regeneration remains unknown. In this study, we implanted SHED in a porcine dental pulp regeneration model to evaluate the regenerative effect and identify whether SHED promoted angiogenesis in regenerated dental pulp. Firstly we verified that xenogenous SHED had the ability to regenerated pulp tissue of host in vivo. Then we found the vasculature in regenerated pulp originated from implanted SHED. In addition, stem cells were isolated from regenerated dental pulp, which exhibited good multi-differentiation properties and promoted angiogenesis in pulp regeneration process and these results demonstrated that SHED promoted angiogenesis in stem cell-mediated dental pulp regeneration.


Asunto(s)
Pulpa Dental/fisiología , Neovascularización Fisiológica , Regeneración , Células Madre/citología , Exfoliación Dental/fisiopatología , Diente Primario/fisiología , Animales , Pulpa Dental/irrigación sanguínea , Pulpa Dental/inervación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Multipotentes/citología , Porcinos , Porcinos Enanos
10.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545804

RESUMEN

Rapid vascularization is required for the regeneration of dental pulp due to the spatially restricted tooth environment. Extracellular vesicles (EVs) released from mesenchymal stromal cells show potent proangiogenic effects. Since EVs suffer from rapid clearance and low accumulation in target tissues, an injectable delivery system capable of maintaining a therapeutic dose of EVs over a longer period would be desirable. We fabricated an EV-fibrin gel composite as an in situ forming delivery system. EVs were isolated from dental pulp stem cells (DPSCs). Their effects on cell proliferation and migration were monitored in monolayers and hydrogels. Thereafter, endothelial cells and DPSCs were co-cultured in EV-fibrin gels and angiogenesis as well as collagen deposition were analyzed by two-photon laser microscopy. Our results showed that EVs enhanced cell growth and migration in 2D and 3D cultures. EV-fibrin gels facilitated vascular-like structure formation in less than seven days by increasing the release of VEGF. The EV-fibrin gel promoted the deposition of collagen I, III, and IV, and readily induced apoptosis during the initial stage of angiogenesis. In conclusion, we confirmed that EVs from DPSCs can promote angiogenesis in an injectable hydrogel in vitro, offering a novel and minimally invasive strategy for regenerative endodontic therapy.


Asunto(s)
Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Fibrina/química , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre Mesenquimatosas/citología , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Colágeno/metabolismo , Pulpa Dental/fisiología , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Microscopía Confocal , Regeneración , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
J Cell Biochem ; 119(1): 536-546, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28608628

RESUMEN

This study aims to elucidate the mechanisms by which microRNA-143-5p (miR-143-5p) targets runt-related transcription factor 2 (Runx2) in the differentiation of dental pulp stem cells (DPSCs) into odontoblasts, through regulating the osteoprotegerin receptor activator of the nuclear factor-κB ligand (OPG/RANKL) signaling pathway. Following transfection, DPSCs were divided into blank, control, miR-143-5p mimics, miR-143-5p inhibitors, miR-143-5p inhibitors + siRunx2 and siRunx2 groups. Alkaline phosphatase (ALP) activity and mineralized nodules were detected using ALP kit and alizarin red staining. Quantitative reverse transcriptase real time PCR (qRT-PCR) was conducted to measure mRNA expressions of miR-143-5p, Runx2, OPG, and RANKL. Western blotting was used to assess protein expression of odontoblast differentiation-related proteins. Transwell assay and an extracellular matrix (ECM) adhesion cell assay were employed to examine cell migration and cell adhesion. Compared with the blank group, the miR-143-5p mimics and siRunx2 groups showed decreased ALP activity, decreased mineralized nodules and displays of calcium. Fewer migrated cells, weakened cell adhesion, decreased protein expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein 1 (DMP1), osteopontin (OPN), bone sialoprotein (BSP), osteocalcin (OCN), OPG and Runx2, and increased RANKL protein expressions were observed. Additionally, opposite results were observed in the miR-143-5p inhibitors group, demonstrating that down-regulated miR-143-5p promotes the differentiation of DPSCs into odontoblasts by enhancing Runx2 expression via the OPG/RANKL signaling pathway. Based on findings in this study, it is postulated that the enhancement of Runx2 expression via the regulation of the OPG/RANKL signaling pathway could be a beneficial approach for dental pulp regeneration. J. Cell. Biochem. 119: 536-546, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Pulpa Dental/metabolismo , MicroARNs/metabolismo , Odontoblastos/metabolismo , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Transducción de Señal , Células Madre/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Pulpa Dental/citología , Femenino , Humanos , Masculino , MicroARNs/genética , Odontoblastos/citología , Osteoprotegerina/genética , Ligando RANK/genética , Células Madre/citología
12.
Int J Biol Macromol ; 264(Pt 2): 130708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460622

RESUMEN

Although conventional root canal treatment offers an effective therapeutic solution, it negatively affects the viability of the affected tooth. In recent years, pulp regeneration technology has emerged as a novel method for treating irreversible pulpitis due to its ability to maintain tooth vitality. The successful implementation of this technique depends on scaffolds and transplantation of exogenous stem cells or recruitment of endogenous stem cells. Accordingly, the three-dimensional structure and viscoelastic characteristics of hydrogel scaffolds, which parallel those of the extracellular matrix, have generated considerable interest. Furthermore, hydrogels support the controlled release of regenerative drugs and to load a wide variety of bioactive molecules. By integrating antibacterial agents into the hydrogel matrix and stimulating an immune response, root canal disinfection can be significantly improved and the rate of pulp regeneration can be accelerated. This review aims to provide an overview of the clinical applications of hydrogels that have been reported in the last 5 years, and offer a comprehensive summary of the different approaches that have been utilized for the optimization of hydrogel scaffolds for pulp regeneration. Advancements and challenges in pulp regeneration using hydrogels treating aged teeth are discussed.


Asunto(s)
Pulpa Dental , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Hidrogeles/farmacología , Regeneración , Andamios del Tejido/química
13.
Clin Exp Dent Res ; 10(1): e816, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38053499

RESUMEN

OBJECTIVES: Migration and differentiation of human dental pulp stem cells (hDPSCs) is a vital and key factor in the success of reparative dentin formation for maintenance of pulp vitality. Pulp capping materials are used to stimulate DPSCs to induce new dentin formation. Thus, the aim of the present study was to compare the response of DPSCs to four commercially available pulp capping materials: a bioactive bioceramic (Material 1), a nonresinous ready-to-use bioceramic cement (Material 2), a bioactive composite (Material 3), and a biocompatible, dual-cured, resin-modified calcium silicate (Material 4). MATERIALS AND METHODS: hDPSCs were isolated and cultured from freshly extracted teeth and were then characterized by flow cytometry and multilineage differentiation. Discs prepared from pulp capping materials were tested with hDPSCs and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, cell migration assay and odontogenic differentiation assay was performed. Expression of osteogenic markers (osteopontin, RUNX family transcription factor 2, osteocalcin) and the odontogenic marker (dentin sialophosphoprotein) was detected using reverse transcription-polymerase chain reaction. RESULTS: Materials 1, 2, and 3 generated more cell viability than Material 4. Furthermore, Material 4 showed the least wound exposure percentage, while Material 3 showed the highest percentage. Enhanced mineralization was found in hDSCPs cultured with Material 3, followed by Material 1, and then Material 2, while Material 4 revealed the least calcified mineralization. CONCLUSIONS: The results of this study were inconclusive regards contemporary bioceramic materials designed for vital pulp therapy as they have different effects on hDPSC. Further testing for cytotoxicity using live-dead staining, animal experiments, clinical trials, and independent analyses of these biomaterials is necessary for clinicians to make an informed decision for their use.


Asunto(s)
Recubrimiento de la Pulpa Dental , Pulpa Dental , Animales , Humanos , Odontogénesis , Diferenciación Celular , Células Madre
14.
Adv Sci (Weinh) ; : e2310285, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013081

RESUMEN

Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.

15.
Int Dent J ; 74(4): 836-846, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38369441

RESUMEN

OBJECTIVE: Pulp regeneration with bioactive dentin-pulp complex has been a research hotspot in recent years. Stem cell therapy provided an interest strategy to regenerate the dental-pulp complex. Hence, this study aimed to evaluate the effects of photosensitive gelatin methacrylate (GelMA) hydrogel encapsulating dental pulp stem cells (DPSCs) and silver nanoparticles (AgNPs) for dental pulp regeneration in vitro. METHODS: First, the AgNPs@GelMA hydrogels were prepared by lithium phenyl-2,4,6-trimethyl-benzoyl phosphinate (LAP) initiation via blue-light emitting diode light. The physical and chemical properties of AgNPs@GelMA hydrogels were comprehensively analysed via scanning electron microscopy (SEM), and mechanical characterisation, such as swelling ability, degradation properties, and AgNP release profile. Then, AgNPs@GelMA hydrogels encapsulated DPSCs were used to establish an AgNPs@GelMA biomimetic complex, further analysing its biocompatibility, antibacterial properties, and angiogenic capacity in vitro. RESULTS: The results indicated that GelMA hydrogels demontrated optimal characteristics with a monomer:LAP ratio of 16:1. The physico-chemical properties of AgNPs@GelMA hydrogels did not change significantly after loading with AgNPs. There was no significant difference in AgNP release rate amongst different concentrations of AgNPs@GelMA hydrogels. Fifty to 200 µg/mL AgNPs@GelMA hydrogels could disperse E faecalis biofilm and reduce its metabolic activity . Furthermore, cell proliferation was arrested in 100 and 200 µg/mL AgNPs@GelMA hydrogels. The inhibition of 50 µg/mL AgNPs@GelMA hydrogels on E faecalis biofilm was above 50%, and the cell viability of the hydrogels was higher than 90%. The angiogenesis assay indicated that AgNPs@GelMA hydrogels encapsulating DPSCs could induce the formation of capillary-like structures and express angiogenic markers CD31, vascular endothelial growth factor , and von willebrand factor (vWF) in vitro. CONCLUSIONS: Results of this study indicate that 50 µg/mL AgNPs@GelMA hydrogels encapsulating DPSCs had significant antibacterial properties and angiogenic capacity, which could provide a significant experimental basis for the regeneration of the dentin-pulp complex.


Asunto(s)
Pulpa Dental , Gelatina , Hidrogeles , Nanopartículas del Metal , Regeneración , Plata , Células Madre , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Humanos , Hidrogeles/química , Nanopartículas del Metal/uso terapéutico , Células Madre/efectos de los fármacos , Regeneración/efectos de los fármacos , Gelatina/química , Metacrilatos/química , Antibacterianos/farmacología , Microscopía Electrónica de Rastreo , Proliferación Celular/efectos de los fármacos
16.
J Pharm Bioallied Sci ; 16(Suppl 1): S809-S811, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595540

RESUMEN

Background: Regenerative endodontic procedures (REPs) have emerged as a transformative approach to treating immature permanent teeth with necrotic pulp tissue. Materials and Methods: A prospective study was conducted, enrolling 100 patients with immature permanent teeth requiring REPs. All procedures were performed by a single experienced endodontist following established protocols. Patients were followed up for a minimum of 5 years' post-treatment. Clinical examinations, radiographic assessments, and patient-reported outcomes were recorded at regular intervals. Data were analyzed using statistical methods to determine the success rates, complications, and factors influencing long-term outcomes. Results: The results of this original research reveal a significant and sustained success rate for REPs. After a minimum follow-up period of 5 years, an arbitrary value of 92% for tooth survival was achieved. Radiographic assessments demonstrated consistent healing of apical lesions, and continued root development was observed in the majority of cases. Patient-reported outcomes indicated a high level of satisfaction with the procedure. Complications such as crown discoloration and tooth fracture occurred in a minority of cases but were effectively managed without compromising the overall success of REPs. Conclusion: This original research provides strong evidence for the long-term success of REPs in the treatment of immature permanent teeth with necrotic pulp tissue. The high tooth survival rate, continued root development, and patient satisfaction support the efficacy of REPs as a reliable treatment option.

17.
J Endod ; 50(4): 483-492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237659

RESUMEN

INTRODUCTION: Dental pulp regeneration is challenging in endodontics. Cellular therapy is an alternative approach to induce dental pulp regeneration. Mesenchymal stromal cells (MSCs) have the capacity to induce dental pulp-like tissue formation. In this study, we evaluated the capacity of allogeneic bone marrow MSCs (BM-MSCs) to regenerate pulp following necrosis and apical periodontitis in children's permanent immature apex teeth. METHODS: Patients aged 8 to 12 years with pulp necrosis and apical periodontitis were evaluated. The study included 15 teeth (13 incisors and 2 molars) from 14 patients (8 boys and 6 girls). Radiographic evaluation showed periapical radiolucency and immature apex teeth. There was no response to cold or electric pulp testing. The root canal of each tooth was cleaned, shaped, and Ca(OH)2 used as an interappointment medication. Cryopreserved allogeneic BM-MSCs were thawed, expanded, incorporated into preclotted platelet-rich plasma, and implanted into the tooth's pulp cavity. They were sealed with bioceramic cement and composite. Sensibility, apical foramen, calcium deposits within the root canal, and resolution of periapical lesions were evaluated in each tooth over the following 12 months. RESULTS: Based on 9 variables established for dental pulp-like tissue regeneration, all MSC-treated teeth showed evidence of successful regeneration. Clinical and radiographic evaluation of the treated teeth showed periapical lesion healing, sensitivity to cold and electricity, decreased width of the apical foramen, and mineralization within the canal space. CONCLUSIONS: Transplantation of allogeneic MSCs induces the formation of dental pulp-like tissue in permanent immature apex teeth with pulp necrosis and apical periodontitis. Implant of MSCs constitutes a potential therapy in regenerative endodontics in pediatric dentistry. Future studies incorporating a larger sample size may confirm these results.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Periodontitis Periapical , Masculino , Femenino , Niño , Humanos , Necrosis de la Pulpa Dental/terapia , Necrosis de la Pulpa Dental/patología , Pulpa Dental/patología , Médula Ósea/patología , Regeneración , Periodontitis Periapical/terapia , Periodontitis Periapical/patología , Tratamiento del Conducto Radicular , Ápice del Diente/patología , Dentina/patología
18.
J Conserv Dent Endod ; 27(5): 458-484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38939542

RESUMEN

Background and Objectives: The present systematic review aims to assess the success rate of the pulp regeneration treatment, according to the American Association of Endodontists (AAE) criteria, using different bioactive materials in permanent teeth of pediatric subjects (6-17 years of age). Materials and Methods: The study protocol was registered on PROSPERO and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. The question formulation was accomplished using the PICO model, and an electronic search was carried out on Scopus, MEDLINE/PubMed, Web of Science, and Cochrane databases till April 1, 2023. A total of 30 studies were established to fulfill the inclusion criteria of this systematic review. Results: A total of 273 teeth have been treated with pulp regeneration treatment. By comparing different biomaterials and the success criteria defined by the AAE, the material associated with a higher success rate was found to be the white mineral trioxide aggregate. However, the overall success rate of pulp regeneration treatment was reported for 248 out of 273 teeth (91.20%). Conclusions: Data obtained support the potential that regenerative endodontics aids in continuing root development in permanent immature teeth. Further studies are needed for a more extensive evaluation of the use of different biomaterials and the success rate in regenerative endodontics.

19.
Pharmaceutics ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678787

RESUMEN

Dental pulp and periapical diseases make patients suffer from acute pain and economic loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp's nutrition, sensory, and immune-regulation functions. In recent years, researchers have made significant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following dental restoration and regeneration. This article focuses on current challenges and novel perspectives about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration through our summary.

20.
Front Bioeng Biotechnol ; 11: 1148532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152652

RESUMEN

Introduction: Decellularized extracellular matrix has been recognized as an optimal scaffold for dental pulp regeneration. However, the limited amount of native dental pulp tissue restricts its clinical applications. The submandibular gland shares some basic extracellular matrix components and characteristics with dental pulp. However, whether decellularized submandibular gland extracellular matrix (DSMG) can be used as an alternative scaffold for dental pulp regenerative medicine is unclear. Methods: Thus, we successfully decellularized the whole rat submandibular gland and human dental pulp, and then conducted in vitro and in vivo studies to compare the properties of these two scaffolds for dental pulp regeneration. Results: Our results showed that extracellular matrix of the submandibular gland had great similarities in structure and composition with that of dental pulp. Furthermore, it was confirmed that the DSMG could support adhesion and proliferation of dental pulp stem cells in vitro. In vivo findings revealed that implanted cell-seeded DSMG formed a vascularized dental pulp-like tissue and expressed markers involved in dentinogenesis and angiogenesis. Discussion: In summary, we introduced a novel accessible biological scaffold and validated its effectiveness as an extracellular matrix-based tissue engineering scaffold for dental pulp regenerative therapy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda