Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.807
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(25): e2118329119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696566

RESUMEN

Under harsh Pleistocene climates, migration and other forms of seasonally patterned landscape use were likely critical for reproductive success of mastodons (Mammut americanum) and other megafauna. However, little is known about how their geographic ranges and mobility fluctuated seasonally or changed with sexual maturity. We used a spatially explicit movement model that coupled strontium and oxygen isotopes from two serially sampled intervals (5+ adolescent years and 3+ adult years) in a male mastodon tusk to test for changes in landscape use associated with maturation and reproductive phenology. The mastodon's early adolescent home range was geographically restricted, with no evidence of seasonal preferences. Following inferred separation from the matriarchal herd (starting age 12 y), the adolescent male's mobility increased as landscape use expanded away from his natal home range (likely central Indiana). As an adult, the mastodon's monthly movements increased further. Landscape use also became seasonally structured, with some areas, including northeast Indiana, used only during the inferred mastodon mating season (spring/summer). The mastodon died in this area (>150 km from his core, nonsummer range) after sustaining a craniofacial injury consistent with a fatal blow from a competing male's tusk during a battle over access to mates. Northeast Indiana was likely a preferred mating area for this individual and may have been regionally significant for late Pleistocene mastodons. Similarities between mammutids and elephantids in herd structure, tusk dimorphism, tusk function, and the geographic component of male maturation indicate that these traits were likely inherited from a common ancestor.


Asunto(s)
Extinción Biológica , Mastodontes , Conducta Sexual Animal , Migración Animal , Animales , Diente Canino , Fósiles , Indiana , Masculino , Mastodontes/crecimiento & desarrollo , Reproducción , Estaciones del Año
2.
J Struct Biol ; 216(1): 108062, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224900

RESUMEN

The palette of mineralized tissues in fish is wide, and this is particularly apparent in fish dentin. While the teeth of all vertebrates except fish contain a single dentinal tissue type, called orthodentin, dentin in the teeth of fish can be one of several different tissue types. The most common dentin type in fish is orthodentin. Orthodentin is characterized by several key structural features that are fundamentally different from those of bone and from those of osteodentin. Osteodentin, the second-most common dentin type in fish (based on the tiny fraction of fish species out of ∼30,000 extant fish species in which tooth structure was so far studied), is found in most Selachians (sharks and rays) as well as in several teleost species, and is structurally different from orthodentin. Here we examine the hypothesis that osteodentin is similar to anosteocytic bone tissue in terms of its micro- and nano-structure. We use Focused Ion Beam-Scanning Electron Microscopy (FIB/SEM), as well as several other high-resolution imaging techniques, to characterize the 3D architecture of the three main components of osteodentin (denteons, inter-denteonal matrix, and the transition zone between them). We show that the matrix of osteodentin, although acellular, is extremely similar to mammalian osteonal bone matrix, both in general morphology and in the three-dimensional nano-arrangement of its mineralized collagen fibrils. We also document the presence of a complex network of nano-channels, similar to such networks recently described in bone. Finally, we document the presence of strings of hyper-mineralized small 'pearls' which surround the denteonal canals, and characterize their structure.


Asunto(s)
Diente , Lobos , Animales , Huesos , Peces , Dentina , Microscopía Electrónica de Rastreo
3.
J Transl Med ; 22(1): 54, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218880

RESUMEN

BACKGROUND: Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS: The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS: The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS: MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.


Asunto(s)
Histonas , MicroARNs , Humanos , Ratas , Animales , Histonas/metabolismo , Células Madre , Diferenciación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Dentina , Células Cultivadas , Histona Demetilasas con Dominio de Jumonji/genética
4.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492000

RESUMEN

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Asunto(s)
Dentina , Ratones Noqueados , Receptores de Calcitriol , Animales , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Ratones , Biglicano/metabolismo , Cicatrización de Heridas , Ratones Endogámicos C57BL , Decorina/metabolismo , Calcificación Fisiológica
5.
Biomed Microdevices ; 26(3): 33, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023652

RESUMEN

Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.


Asunto(s)
Papila Dental , Dispositivos Laboratorio en un Chip , Células Madre , Humanos , Células Madre/citología , Papila Dental/citología , Animales , Microambiente Celular , Pulpa Dental/citología , Ingeniería de Tejidos/instrumentación , Nicho de Células Madre , Dentina/citología
6.
Int J Legal Med ; 138(2): 451-465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37861739

RESUMEN

The age estimation of an adult using methods accessible to the forensic routine is a goal pursued by forensic experts. Cameriere, Ferrante and Cingolani (2004) proposed the use of the pulp/tooth area ratio of canine teeth as a promising variable, but its reliability has shown conflicting results in the scientific literature. This article aimed to carry out a systematic review with meta-analysis to verify whether the pulp/tooth area ratio of canine teeth includes a variable that can be used alone to estimate dental age in adults. A systematic search was carried out in six databases using keywords related to the theme in Portuguese, English, and Spanish. The study selection process followed pre-established eligibility criteria. Assessments were carried out regarding risk of bias and publication bias of selected studies, and meta-analysis was carried out considering Pearson's correlation coefficient between pulp/tooth area ratio and chronological age as effect measure. Most selected studies showed low risk of bias; no publication bias was found when all studies were considered, and potential publication bias was found when outliers were removed. Despite the high heterogeneity among studies and the need for more research, it could be observed that the pulp/tooth area ratio has strong negative correlation with chronological age, and the pulp/tooth area ratio could be derived from both periapical radiographs and orthopantomographs. Therefore, it is suggested that there is scientific evidence that the pulp/tooth area ratio obtained from canine teeth is reliable for dental age estimation in adults.


Asunto(s)
Determinación de la Edad por los Dientes , Diente Canino , Adulto , Humanos , Diente Canino/diagnóstico por imagen , Diente Canino/anatomía & histología , Reproducibilidad de los Resultados , Determinación de la Edad por los Dientes/métodos , Radiografía Panorámica , Etnicidad , Pulpa Dental/diagnóstico por imagen
7.
J Fluoresc ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985395

RESUMEN

Adhesive dentistry has made it feasible to design restorations with high aesthetic qualities and little invasiveness. However, the freshly cut dentin after the tooth preparation needs to be sealed to prevent its contaminations, bacterial leakage, and hypersensitivity. Consequently, the immediate dentin sealing (IDS) method has been advised. This study examines different dentinal tubule sealing methods via CO2 laser, diode laser (980-nm) and a two-step self-etch adhesive system applied directly to the fresh cut dentin preceding the placement of the provisional phase. The sealing efficiency of each laser and bond system was evaluated based on the laser-induced fluorescence (LIF) properties and image analysis by scanning electron microscopy. Moreover, the obtained LIF spectra were evaluated using partial least square progression. A two-step adhesive containing a high concentration of S-PRG fillers produced a thick layer that was not perfectly uniform at all sites due to uneven filler distribution in the bond with totally and partially closed dentinal tubules. However, the peaks of the LIF spectra dropped after applying laser because of its sealing effectiveness. Accordingly, CO2 and diode lasers have strong evidence in dentinal tubule sealing and a definitive treatment modality for dentinal hypersensitivity. Moreover, IDS with an adhesive system is superior in occluding dentinal tubules in a biomimetic manner based on its filler content and bioactive properties.

8.
Int J Hyperthermia ; 41(1): 2369749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38925872

RESUMEN

PURPOSE: Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS: We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS: Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION: YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.


Asunto(s)
Diferenciación Celular , Respuesta al Choque Térmico , Odontoblastos , Proteínas Señalizadoras YAP , Odontoblastos/metabolismo , Animales , Proteínas Señalizadoras YAP/metabolismo , Ratones , Línea Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Supervivencia Celular
9.
Clin Oral Implants Res ; 35(4): 407-418, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287504

RESUMEN

OBJECTIVES: To study bone healing of two-wall bone defects after alveolar ridge preservation using mineralized dentin matrix. MATERIALS AND METHODS: After distal roots extraction of second and fourth premolars (P2, P4) on one lateral mandible in 12 beagles, two-wall bone defects (5 × 5 × 5 mm) were surgically created distally to the remaining mesial roots of P2 and P4. A total of 24 sites were randomly allocated to three groups (implant material- time of execution): mineralized dentin matrix (MDM)-3 m (MDM + collagen membrane; 3 months), MDM-6 m (MDM particles + collagen membrane; 6 months), and C-6 m (collagen membrane only; 6 months). Clinical, radiographic, digital, and histological examinations were performed 3 and 6 months after surgery. RESULTS: The bone healing in MDM groups were better compared to Control group (volume of bone regenerated in total: 25.12 mm3 vs. 13.30 mm3, p = .046; trabecular volume/total volume: 58.84% vs. 39.18%, p = .001; new bone formation rate: 44.13% vs. 31.88%, p = .047). Vertically, the radiological bone level of bone defect in MDM-6 m group was higher than that in C-6 m group (vertical height of bone defect: 1.55 mm vs. 2.74 mm, p = .018). Horizontally, no significant differences in buccolingual bone width were found between MDM and C groups at any time or at any level below the alveolar ridge. The percentages of remaining MDM were <1% in both MDM-3 m and MDM-6 m groups. CONCLUSIONS: MDM improved bone healing of two-wall bone defects and might be considered as a socket fill material used following tooth extraction.


Asunto(s)
Pérdida de Hueso Alveolar , Aumento de la Cresta Alveolar , Perros , Animales , Alveolo Dental/cirugía , Alveolo Dental/patología , Proceso Alveolar/cirugía , Proceso Alveolar/patología , Colágeno , Extracción Dental , Dentina , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/cirugía , Pérdida de Hueso Alveolar/patología
10.
Eur J Oral Sci ; 132(2): e12970, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173083

RESUMEN

This study aimed to evaluate the effect of n-propyl gallate as pre-treatment for resin-dentin bond strength. The dentin pre-treatments evaluated included propyl gallate of concentrations 0.1% (w/v), 1.0% (w/v), and 10.0% (w/v), as well as glutaraldehyde 5.0% (v/v), and distilled water as a control treatment. Dentin specimens were prepared for Fourier Transformed Infrared Spectroscopy (FT-IR) (n = 3/pre-treatment). Pre-treatments were actively applied to dentin blocks before performing the adhesive procedure to composite resin. Microtensile bond strength to dentin (µTBS) (n = 8/pre-treatment) was determined after 24 h and 6 months of storage. Data were submitted to a two-way ANOVA, followed by Tukey's post hoc test. As for FT-IR, propyl gallate 1%-treated specimens presented higher water, carbonate, collagen, and amide absorbance rates compared to other tested groups, while specimens pre-treated with glutaraldehyde and distilled water presented similar absorbance curves. Regarding µTBS, all concentrations of propyl gallate resulted in statistically significant higher bond strength values than distilled water at 24 h. After 6 months of storage, propyl gallate 0.1% was the only group that maintained µTBS over time. Propyl gallate 0.1% might be a suitable dentinal pre-treatment due to being able to present chemical bonds with demineralized dentin and providing resin-dentin bond stability after 6 months of storage.


Asunto(s)
Recubrimiento Dental Adhesivo , Galato de Propilo , Galato de Propilo/análisis , Galato de Propilo/farmacología , Recubrimientos Dentinarios/química , Glutaral , Espectroscopía Infrarroja por Transformada de Fourier , Cementos de Resina/química , Dentina , Resistencia a la Tracción , Ensayo de Materiales , Cementos Dentales/farmacología , Resinas Compuestas/química , Agua/química
11.
Eur J Oral Sci ; : e13015, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210526

RESUMEN

This study evaluated the effect of solutions containing aminomethacrylate copolymer (AA) and sodium fluoride (F; 225 ppm F-) or fluoride plus stannous chloride (FSn; 225 ppm F-, 800 ppm Sn2+) against enamel and dentin erosion/abrasion. Solutions F, FSn, AA, F+AA, FSn+AA, and deionized water as negative control were tested. Bovine enamel and dentin specimens (n = 13/solution/substrate) underwent a set of erosion-abrasion cycles (0.3% citric acid [5 min, 4×/day], human saliva [1 h, 4×/day], brushing [15 s, 2×/day], and treatments [2 min, 2×/day]) for each of five days. Initial enamel erosion was evaluated using Knoop microhardness after the first and second acid challenge on day 1, and surface loss with profilometry after day 5. KOH-soluble fluoride was assessed. Data were analyzed with ANOVA/Tukey tests. The combination of fluoride and AA resulted in higher protection against enamel erosion, whereas this was not the case for the combination of AA and FSn. All treatments protected against enamel and dentin loss. The lowest surface loss values were observed with F+AA and FSn+AA. The polymer did not significantly influence the KOH-soluble fluoride formation on enamel/dentin specimens. The aminomethacrylate copolymer effectively enhanced the efficacy of sodium fluoride against initial erosion and improved the control of enamel and dentin wear of F and FSn solutions.

12.
Eur J Oral Sci ; 132(4): e13002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38938069

RESUMEN

This study evaluated bond strength of glass fiber posts to root dentin using push-out (PO) and diametral compression (DC), testing glycolic acid as a conditioner and varying dentin moisture. An additional aim was to test whether DC can be an alternative test to PO for bond strength assessment. Eighty bovine teeth were divided into eight groups (n = 10) defined by the use of either 37% glycolic acid or 37% phosphoric acid (PA) on moist or wet dentin before bonding with either Adapter SingleBond/RelyX ARC or One Step Plus/Duo-Link Bisco. Each tooth provided discs with an internal diameter of 2 mm, external diameter of 5 mm, and height of 2 mm, which underwent PO and DC. Finite element analysis (FEA) was carried out on 3D models. When analyzing PO results through linear regression, the highest values of bond strength were observed using glycolic acid on wet dentin in the cervical and middle thirds of the teeth. Analyzing DC results, the only statistical influence on values was the dental thirds. The scatterplot of the DC results and the PO bond strength values indicated no relationship between the results of the two tests (r = 0.03; p = 0.64). PO test detected more sensitive changes in bond strength values than DC.


Asunto(s)
Recubrimiento Dental Adhesivo , Dentina , Análisis de Elementos Finitos , Vidrio , Ácidos Fosfóricos , Técnica de Perno Muñón , Animales , Bovinos , Dentina/efectos de los fármacos , Vidrio/química , Ácidos Fosfóricos/química , Recubrimientos Dentinarios/química , Cementos de Resina/química , Análisis del Estrés Dental , Ensayo de Materiales , Raíz del Diente , Glicolatos/química , Grabado Ácido Dental
13.
Eur J Oral Sci ; 132(3): e12983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497607

RESUMEN

In this study, we evaluated the effect of four different strategies for bonding a CAD/CAM resin nanoceramic restoration (Lava Ultimate, 3M) to the dentin surface using a universal adhesive (Scotch Bond Universal, 3M) and adhesive resin cement (RelyX Ultimate, 3M) on the shear bond strength (SBS) and failure mode. The strategies comprised: (i) immediate sealing, immediate bonding; (ii) immediate sealing, bonding after 2 weeks with provisional restoration; (iii) immediate sealing with flowable resin composite reinforcement and bonding after 2 weeks with provisional restoration; and (iv) no immediate sealing, and bonding after 2 weeks with provisional restoration. After bonding, all the specimens were thermocycled, shear tests were performed using a universal testing machine, and failure modes were determined using stereomicroscope and scanning electron microscopy. The highest mean SBS was recorded with immediate sealing, immediate bonding strategy. Most adhesive failures with exposed dentinal tubules were noted in specimens exposed to bonding after 2 weeks with no immediate sealing, which was associated with the lowest SBS. Mixed failures predominated in all immediate dentin sealing groups. Immediate sealing with universal adhesives improves SBS, particularly in the single-visit approach, which has shown significantly better performance, whereas the provisional phase has a negative effect.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Análisis del Estrés Dental , Recubrimientos Dentinarios , Cementos de Resina , Resistencia al Corte , Resinas Compuestas/química , Recubrimiento Dental Adhesivo/métodos , Humanos , Cementos de Resina/química , Recubrimientos Dentinarios/química , Dentina , Microscopía Electrónica de Rastreo , Ensayo de Materiales , Restauración Dental Permanente/métodos , Cerámica/química , Diseño Asistido por Computadora , Propiedades de Superficie , Fracaso de la Restauración Dental
14.
Oral Dis ; 30(6): 3745-3760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38409677

RESUMEN

OBJECTIVES: A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS: Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS: We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS: The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.


Asunto(s)
Diferenciación Celular , Factores de Transcripción de Tipo Kruppel , Odontoblastos , Odontoblastos/metabolismo , Humanos , Diferenciación Celular/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción Sp/genética , Factores de Transcripción Sp/metabolismo , Dentina/metabolismo , Odontogénesis/genética , Odontogénesis/fisiología
15.
Lasers Surg Med ; 56(4): 371-381, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38563442

RESUMEN

OBJECTIVES: To develop and practically test high-precision femtosecond laser ablation models for dental hard tissue that are useful for detailed planning of automated laser dental restorative treatment. METHODS: Analytical models are proposed, derived, and demonstrated for practical calculation of ablation rates, ablation efficiency and ablated morphology of human dental enamel and dentin using femtosecond lasers. The models assume an effective optical attenuation coefficient for the irradiated material. To achieve ablation, it is necessary for the local energy density of the attenuated pulse in the hard tissue to surpass a predefined threshold that signifies the minimum energy density required for material ionization. A 1029 nm, 40 W carbide 275 fs laser was used to ablate sliced adult human teeth and generate the data necessary for testing the models. The volume of material removed, and the shape of the ablated channel were measured using optical profilometry. RESULTS: The models fit with the measured ablation efficiency curve against laser fluence for both enamel and dentin, correctly capturing the fluence for optimum ablation and the volume of ablated material per pulse. The detailed shapes of a 400-micrometer wide channel and a single-pulse width channel are accurately predicted using the superposition of the analytical result for a single pulse. CONCLUSIONS: The findings have value for planning automated dental restorative treatment using femtosecond lasers. The measurements and analysis give estimates of the optical properties of enamel and dentin irradiated with an infrared femtosecond laser at above-threshold fluence and the proposed models give insight into the physics of femtosecond laser processing of dental hard tissue.


Asunto(s)
Terapia por Láser , Diente , Humanos , Dentina/cirugía , Rayos Láser , Luz
16.
Caries Res ; 58(2): 77-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198764

RESUMEN

INTRODUCTION: Erosive tooth wear is a highly prevalent dental condition that is modified by the ever-present salivary pellicle. The aim of the present in situ study was to investigate the effect of polyphenols on the ultrastructure of the pellicle formed on dentin in situ and a subsequent erosive challenge. METHODS: The pellicle was formed on bovine dentin specimens for 3 min or 2 h in 3 subjects. After subjects rinsed with sterile water (negative control), 1% tannic acid, 1% hop extract, or tin/fluoride solution containing 800 ppm tin and 500 ppm fluoride (positive control), specimens were removed from the oral cavity. The erosive challenge was performed on half of the specimens with 1% citric acid, and all specimens were analyzed by transmission electron microscopy. Incorporation of tannic acid in the pellicle was investigated by fluorescence spectroscopy. RESULTS: Compared to the negative control, ultrastructural analyses reveal a thicker and electron-denser pellicle after application of polyphenols, in which, according to spectroscopy, tannic acid is also incorporated. Application of citric acid resulted in demineralization of dentin, but to a lesser degree when the pellicle was pretreated with a tin/fluoride solution. The pellicle was more acid-resistant than the negative control when modified with polyphenols or tin/fluoride solution. CONCLUSION: Polyphenols can have a substantial impact on the ultrastructure and acid resistance of the dentin pellicle, while the tin/fluoride solution showed explicit protection against erosive demineralization.


Asunto(s)
Esmalte Dental , Erosión de los Dientes , Humanos , Animales , Bovinos , Película Dental , Fluoruros/farmacología , Erosión de los Dientes/prevención & control , Estaño/farmacología , Polifenoles/farmacología , Fluoruros de Estaño/farmacología , Ácido Cítrico/efectos adversos , Dentina
17.
Radiat Environ Biophys ; 63(2): 283-295, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38625398

RESUMEN

This study aimed to assess the in vitro effects of re-irradiation on enamel and dentin properties, simulating head and neck cancer radiotherapy retreatment. Forty-five human permanent molars were classified into five groups: non-irradiated; irradiated 60 Gy, and re-irradiated with doses of 30, 40, and 50 Gy. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were employed for analysis. Raman spectroscopy assessed intensity, spectral area, and specific peaks comparatively. Statistical analysis involved Kolmogorov-Smirnov and One-Way ANOVA tests, with Tukey's post-test (significance level set at 5%). Significant changes in irradiated, non-irradiated, and re-irradiated enamel peaks were observed, including phosphate (438 nm), hydroxyapatite (582 nm), phosphate (960 nm), and carbonate (1070 nm) (p < 0.05). Re-irradiation affected the entire tooth (p > 0.05), leading to interprismatic region degradation, enamel prism destruction, and hydroxyapatite crystal damage. Dentin exhibited tubule obliteration, crack formation, and progressive collagen fiber fragmentation. EDX revealed increased oxygen percentage and decreased phosphorus and calcium post-reirradiation. It is concluded that chemical and morphological changes in irradiated permanent teeth were dose-dependent, exacerbated by re-irradiation, causing substantial damage in enamel and dentin.


Asunto(s)
Esmalte Dental , Dentina , Humanos , Esmalte Dental/efectos de la radiación , Esmalte Dental/química , Dentina/efectos de la radiación , Dentina/química , Espectrometría Raman , Diente/efectos de la radiación , Diente Molar/efectos de la radiación
18.
Int Endod J ; 57(4): 477-489, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240378

RESUMEN

AIM: Endodontic irrigants may affect the mechanical and chemical properties of dentine. This study evaluated the effects of various final irrigation protocols including the use of chitosan nanoparticle (CSnp) and cross-linking with genipin on the (1) mechanical and (2) chemical properties of dentine against enzymatic degradation. METHODOLOGY: CSnp was synthesized and characterized considering physiochemical parameters and stability. The root canals of 90 single-rooted teeth were prepared and irrigated with NaOCl. Dentine discs were obtained and divided into groups according to the following irrigation protocols: Group NaOCl+EDTA, Group NaOCl+CSnp, Group NaOCl+EDTA+CSnp, Group NaOCl+CSnp+Genipin, Group NaOCl+EDTA+CSnp+Genipin and Group distilled water. (1) Mechanical changes were determined by microhardness analysis using Vickers-tester. (2) Chemical changes were determined by evaluating molecular and elemental compositions of dentine using Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscope (SEM)/energy dispersive X-ray spectroscopy (EDS) analysis, respectively. All analyses were repeated after the discs were kept in collagenase for 24 h. Data were analysed with repeated measures analysis of variance and Bonferroni correction for microhardness analysis, and Kruskal-Wallis and Wilcoxon tests for FTIR and SEM/EDS analyses (p = .05). RESULTS: (1) Collagenase application did not have a negative effect on microhardness only in Group NaOCl+EDTA+CSnp+Genipin when compared with the post-irrigation values (p > .05). Post-collagenase microhardness of Group NaOCl+EDTA+CSnp and Group NaOCl+CSnp+Genipin was similar to the initial microhardness (p > .05). (2) After collagenase, Amide III/ PO 4 3 - ratio presented no change in Group NaOCl+EDTA+CSnp, Group NaOCl+CSnp+Genipin and Group NaOCl+EDTA+CSnp+Genipin (p > .05), while decreased in other groups (p < .05). Collagenase did not affect CO 3 2 - / PO 4 3 - ratio in the groups (p > .05). There were no changes in the groups in terms of elemental level before and after collagenase application (p > .05). CONCLUSIONS: CSnp and genipin positively affected the microhardness and molecular composition of dentine. This effect was more pronounced when CSnp was used after EDTA.


Asunto(s)
Quitosano , Iridoides , Hipoclorito de Sodio , Ácido Edético/farmacología , Hipoclorito de Sodio/farmacología , Quitosano/farmacología , Quitosano/análisis , Dentina , Irrigantes del Conducto Radicular/farmacología , Cavidad Pulpar
19.
Int Endod J ; 57(2): 164-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947494

RESUMEN

AIM: To develop a new coculture system that allows exposure of dental pulp cells (DPCs) to Streptococcus mutans and dentine matrix proteins (eDMP) to study cellular interactions in dentine caries. METHODOLOGY: Dental pulp cells and S. mutans were cocultured with or without eDMP for 72 h. Cell proliferation and viability were assessed by cell counting and MTT assays, while bacterial growth and viability were determined by CFU and LIVE/DEAD staining. Glucose catabolism and lactate excretion were measured photometrically as metabolic indicators. To evaluate the inflammatory response, the release of cytokines and growth factors (IL-6, IL-8, TGF-ß1, VEGF) was determined by ELISA. Non-parametric statistical analyses were performed to compare all groups and time points (Mann-Whitney U test or Kruskal-Wallis test; α = .05). RESULTS: While eDMP and especially S. mutans reduced the number and viability of DPCs (p ≤ .0462), neither DPCs nor eDMP affected the growth and viability of S. mutans during coculture (p > .0546). The growth of S. mutans followed a common curve, but the death phase was not reached within 72 h. S. mutans consumed medium glucose in only 30 h, whereas in the absence of S. mutans, cells were able to catabolize glucose throughout 72 h, resulting in the corresponding amount of l-lactate. No change in medium pH was observed. S. mutans induced IL-6 production in DPCs (p ≤ .0011), whereas eDMP had no discernible effect (p > .7509). No significant changes in IL-8 were observed (p > .198). TGF-ß1, available from eDMP supplementation, was reduced by DPCs over time. VEGF, on the other hand, was increased in all groups during coculture. CONCLUSIONS: The results show that the coculture of DPCs and S. mutans is possible without functional impairment. The bacterially induced stimulation of proinflammatory and regenerative cytokines provides a basis for future investigations and the elucidation of molecular biological relationships in pulp defence against caries.


Asunto(s)
Caries Dental , Pulpa Dental , Humanos , Técnicas de Cocultivo , Factor de Crecimiento Transformador beta1 , Streptococcus mutans , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/farmacología , Interleucina-8 , Caries Dental/microbiología , Citocinas , Glucosa/farmacología , Lactatos/farmacología
20.
Int Endod J ; 57(6): 727-744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436622

RESUMEN

AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.


Asunto(s)
Antiinflamatorios , Cerio , Pulpa Dental , Nanopartículas , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Cerio/farmacología , Humanos , Antiinflamatorios/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cerámica/farmacología , Diferenciación Celular/efectos de los fármacos , Vidrio , Odontoblastos/efectos de los fármacos , Regeneración/efectos de los fármacos , Células THP-1 , Materiales de Recubrimiento Pulpar y Pulpectomía/farmacología , Interleucina-1beta/metabolismo , Apoptosis/efectos de los fármacos , Porosidad , Células Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda