Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541084

RESUMEN

Adenomatous polyposis coli (APC) is a scaffold protein with tumour suppressor properties. Mutations causing the loss of its C-terminal domain (APC-C), which bears cytoskeleton-regulating sequences, correlate with colorectal cancer. The cellular roles of APC in mitosis are widely studied, but the molecular mechanisms of its interaction with the cytoskeleton are poorly understood. Here, we investigated how APC-C regulates microtubule properties, and found that it promotes both microtubule growth and shrinkage. Strikingly, APC-C accumulates at shrinking microtubule extremities, a common characteristic of depolymerases. Cryo-electron microscopy revealed that APC-C adopts an extended conformation along the protofilament crest and showed the presence of ring-like tubulin oligomers around the microtubule wall, which required the presence of two APC-C sub-domains. A mutant of APC-C that was incapable of decorating microtubules with ring-like tubulin oligomers exhibited a reduced effect on microtubule dynamics. Finally, whereas native APC-C rescued defective chromosome alignment in metaphase cells silenced for APC, the ring-incompetent mutant failed to correct mitotic defects. Thus, the bilateral interaction of APC-C with tubulin and microtubules likely contributes to its mitotic functions.


Asunto(s)
Poliposis Adenomatosa del Colon , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo , Poliposis Adenomatosa del Colon/metabolismo
2.
Vet Res ; 55(1): 59, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715095

RESUMEN

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/fisiología , Ratones , Infecciones por Klebsiella/terapia , Infecciones por Klebsiella/veterinaria , Infecciones por Klebsiella/microbiología , Bacteriófagos/fisiología , Modelos Animales de Enfermedad , Terapia de Fagos , Femenino , Glicósido Hidrolasas/metabolismo , Bovinos
3.
Biodegradation ; 35(2): 137-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37639167

RESUMEN

PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with Km and apparent Vmax values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0-9.0 and 35-45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of Aeromonas caviae Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of Aeromonas caviae Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.


Asunto(s)
Aeromonas caviae , Polímeros , Poliésteres/metabolismo , Aeromonas caviae/metabolismo , Biodegradación Ambiental , Diálisis Renal , Suelo
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396752

RESUMEN

Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genoma Viral , Myoviridae/genética , Genómica
5.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255796

RESUMEN

The TP-84 bacteriophage, which infects Geobacillus stearothermophilus strain 10 (G. stearothermophilus), has a genome size of 47.7 kilobase pairs (kbps) and contains 81 predicted protein-coding ORFs. One of these, TP84_26 encodes a putative tail fiber protein possessing capsule depolymerase activity. In this study, we cloned the TP84_26 gene into a high-expression Escherichia coli (E. coli) system, modified its N-terminus with His-tag, expressed both the wild type gene and His-tagged variant, purified the recombinant depolymerase variants, and further evaluated their properties. We developed a direct enzymatic assay for the depolymerase activity toward G. stearothermophilus capsules. The recombinant TP84_26 protein variants effectively degraded the existing bacterial capsules and inhibited the formation of new ones. Our results provide insights into the novel TP84_26 depolymerase with specific activity against thermostable G. stearothermophilus and its role in the TP-84 life cycle. The identification and characterization of novel depolymerases, such as TP84_26, hold promise for innovative strategies to combat bacterial infections and improve various industrial processes.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Geobacillus stearothermophilus/genética , Cápsulas Bacterianas , Bacteriófagos/genética , Pruebas de Enzimas
6.
BMC Bioinformatics ; 24(1): 208, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208612

RESUMEN

Biofilm production plays a clinically significant role in the pathogenicity of many bacteria, limiting our ability to apply antimicrobial agents and contributing in particular to the pathogenesis of chronic infections. Bacteriophage depolymerases, leveraged by these viruses to circumvent biofilm mediated resistance, represent a potentially powerful weapon in the fight against antibiotic resistant bacteria. Such enzymes are able to degrade the extracellular matrix that is integral to the formation of all biofilms and as such would allow complementary therapies or disinfection procedures to be successfully applied. In this manuscript, we describe the development and application of a machine learning based approach towards the identification of phage depolymerases. We demonstrate that on the basis of a relatively limited number of experimentally proven enzymes and using an amino acid derived feature vector that the development of a powerful model with an accuracy on the order of 90% is possible, showing the value of such approaches in protein functional annotation and the discovery of novel therapeutic agents.


Asunto(s)
Bacteriófagos , Antibacterianos , Bacterias
7.
Appl Environ Microbiol ; 89(11): e0148823, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37855636

RESUMEN

IMPORTANCE: Polyhydroxyalkanoate (PHA) is a highly biodegradable microbial polyester, even in marine environments. In this study, we incorporated an enrichment culture-like approach in the process of isolating marine PHA-degrading bacteria. The resulting 91 isolates were suggested to fall into five genera (Alloalcanivorax, Alteromonas, Arenicella, Microbacterium, and Pseudoalteromonas) based on 16S rRNA analysis, including two novel genera (Arenicella and Microbacterium) as marine PHA-degrading bacteria. Microbacterium schleiferi (DSM 20489) and Alteromonas macleodii (NBRC 102226), the type strains closest to the several isolates, have an extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase homolog that does not fit a marine-type domain composition. However, A. macleodii exhibited no PHA degradation ability, unlike M. schleiferi. This result demonstrates that the isolated Alteromonas spp. are different species from A. macleodii. P(3HB) depolymerase homologs in the genus Alteromonas should be scrutinized in the future, particularly about which ones work as the depolymerase.


Asunto(s)
Polihidroxialcanoatos , Pseudoalteromonas , Polihidroxialcanoatos/metabolismo , ARN Ribosómico 16S/genética , Bahías , Agua de Mar , Pseudoalteromonas/genética
8.
J Biomed Sci ; 30(1): 31, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210493

RESUMEN

BACKGROUND: Klebsiella pneumoniae capsular types K1, K2, K5, K20, K54, and K57 are prevalent hypervirulent types associated with community infections, and worrisomely, hypervirulent strains that acquired drug resistance have been found. In the search for alternative therapeutics, studies have been conducted on phages that infect K. pneumoniae K1, K2, K5, and K57-type strains and their phage-encoded depolymerases. However, phages targeting K. pneumoniae K20-type strains and capsule depolymerases capable of digesting K20-type capsules have rarely been reported. In this study, we characterized a phage that can infect K. pneumoniae K20-type strains, phage vB_KpnM-20. METHODS: A phage was isolated from sewage water in Taipei, Taiwan, its genome was analyzed, and its predicted capsule depolymerases were expressed and purified. The host specificity and capsule-digesting activity of the capsule depolymerases were determined. The therapeutic effect of the depolymerase targeting K. pneumoniae K20-type strains was analyzed in a mouse infection model. RESULTS: The isolated Klebsiella phage, vB_KpnM-20, infects K. pneumoniae K7, K20, and K27-type strains. Three capsule depolymerases, K7dep, K20dep, and K27dep, encoded by the phage were specific to K7, K20, and K27-type capsules, respectively. K20dep also recognized Escherichia coli K30-type capsule, which is highly similar to K. pneumoniae K20-type. The survival of K. pneumoniae K20-type-infected mice was increased following administration of K20dep. CONCLUSIONS: The potential of capsule depolymerase K20dep for the treatment of K. pneumoniae infections was revealed using an in vivo infection model. In addition, K7dep, K20dep, and K27dep capsule depolymerases could be used for K. pneumoniae capsular typing.


Asunto(s)
Bacteriófagos , Klebsiella pneumoniae , Animales , Ratones , Klebsiella pneumoniae/genética , Cápsulas , Glicósido Hidrolasas/genética , Bacteriófagos/genética , Modelos Animales de Enfermedad
9.
J Biomed Sci ; 30(1): 75, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653407

RESUMEN

BACKGROUND: Klebsiella aerogenes can cause ventilator-associated pneumonia by forming biofilms, and it is frequently associated with multidrug resistance. Phages are good antibiotic alternatives with unique advantages. There has been a lack of phage therapeutic explorations, kinetic studies, and interaction mechanism research targeting K. aerogenes. METHODS: Plaque assay, transmission electron microscopy and whole-genome sequencing were used to determine the biology, morphology, and genomic characteristics of the phage. A mouse pneumonia model was constructed by intratracheal/endobronchial delivery of K. aerogenes to assess the therapeutic effect of phage in vivo. Bioinformatics analysis and a prokaryotic protein expression system were used to predict and identify a novel capsule depolymerase. Confocal laser scanning microscopy, Galleria mellonella larvae infection models and other experiments were performed to clarify the function of the capsule depolymerase. RESULTS: A novel lytic phage (pK4-26) was isolated from hospital sewage. It was typical of the Podoviridae family and exhibited serotype specificity, high lytic activity, and high environmental adaptability. The whole genome is 40,234 bp in length and contains 49 coding domain sequences. Genomic data show that the phage does not carry antibiotic resistance, virulence, or lysogenic genes. The phage effectively lysed K. aerogenes in vivo, reducing mortality and alleviating pneumonia without promoting obvious side effects. A novel phage-derived depolymerase was predicted and proven to be able to digest the capsule, remove biofilms, reduce bacterial virulence, and sensitize the bacteria to serum killing. CONCLUSIONS: The phage pK4-26 is a good antibiotic alternative and can effectively relieve pneumonia caused by multidrug-resistant K. aerogenes. It carries a depolymerase that removes biofilms, reduces virulence, and improves intrinsic immune sensitivity.


Asunto(s)
Bacteriófagos , Enterobacter aerogenes , Neumonía , Animales , Ratones , Bacteriófagos/genética , Cinética , Antibacterianos , Modelos Animales de Enfermedad
10.
Biofouling ; 39(7): 763-774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795651

RESUMEN

This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.


Asunto(s)
Bacteriófagos , Salmonella typhimurium , Biopelículas , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Cloranfenicol/farmacología , Tetraciclina/farmacología , Pruebas de Sensibilidad Microbiana
11.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835449

RESUMEN

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Asunto(s)
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Filogenia , Genoma Viral , Podoviridae/genética , Proteínas Recombinantes/genética
12.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901931

RESUMEN

Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES).


Asunto(s)
Polihidroxialcanoatos , Pseudomonas chlororaphis , Pseudomonas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lipasa/metabolismo , Poliésteres/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas chlororaphis/genética , Especificidad por Sustrato
13.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37895132

RESUMEN

Worldwide, huge amounts of plastics are being introduced into the ecosystem, causing environmental pollution. Generally, plastic biodegradation in the ecosystem takes hundreds of years. Hence, the isolation of plastic-biodegrading microorganisms and finding optimum conditions for their action is crucial. The aim of the current study is to isolate plastic-biodegrading fungi and explore optimum conditions for their action. Soil samples were gathered from landfill sites; 18 isolates were able to grow on SDA. Only 10 isolates were able to the degrade polyvinyl chloride (PVC) polymer. Four isolates displayed promising depolymerase activity. Molecular identification revealed that three isolates belong to genus Aspergillus, and one isolate was Malassezia sp. Three isolates showed superior PVC-biodegrading activity (Aspergillus-2, Aspergillus-3 and Malassezia) using weight reduction analysis and SEM. Two Aspergillus strains and Malassezia showed optimum growth at 40 °C, while the last strain grew better at 30 °C. Two Aspergillus isolates grew better at pH 8-9, and the other two isolates grow better at pH 4. Maximal depolymerase activity was monitored at 50 °C, and at slightly acidic pH in most isolates, FeCl3 significantly enhanced depolymerase activity in two Aspergillus isolates. In conclusion, the isolated fungi have promising potential to degrade PVC and can contribute to the reduction of environmental pollution in eco-friendly way.


Asunto(s)
Aspergillus fumigatus , Malassezia , Aspergillus fumigatus/metabolismo , Cloruro de Polivinilo , Ecosistema , Hongos/metabolismo , Aspergillus/metabolismo , Biodegradación Ambiental
14.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240444

RESUMEN

Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage-bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Mariposas Nocturnas , Animales , Bacteriófagos/genética , Acinetobacter baumannii/metabolismo , Larva/microbiología , Antibacterianos/metabolismo
15.
Microb Pathog ; 162: 105365, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34921957

RESUMEN

This study was designed to evaluate the abilities of phage P22 to lyse, eradiate, and disperse the biofilm cells of Salmonella enterica serovar Typhimurium ATCC 19585 (STWT), ciprofloxacin-induced Typhimurium ATCC 19585 (STCIP), S. Typhimurium KCCM 40253 (STKCCM), and multidrug-resistant S. Typhimurium CCARM 8009 (STCCARM) in association with hydrophobicity, auto-aggregation, motility, protein content, extracellular DNA, and depolymerase activity. The affinity to hexadecane was significantly increased in STWT, STKCCM, and STCCARM cells after P22 infection. All strains tested showed relatively higher auto-aggregation abilities in the presence of P22 than the absence of P22. STKCCM showed the greatest auto-aggregative ability (23%) in the presence of P22, while STWT showed the least auto-aggregative ability (9%) in the absence of P22. The bacterial swimming motility affected the bacterial attachment at the early stage of biofilm formation. The red, dry and rough morphotype was observed for all strains tested. The numbers of STWT, STCIP, and STKCCM planktonic cells were considerably reduced by 7.2, 5.0, and 5.0 log CFU/ml, respectively, and STWT, STCIP, and STKCCM biofilm-forming cells were reduced by 5.8, 4.5, and 4.9 log, respectively, after 24 h of phage infection. The depolymerase produced by phages were confirmed by the presence of outer rim of plaques. Phages could be considered as promising alternatives for the control of biofilms due to their advantages including enzymatic degradation of extracellular biofilm matrix. The study would provide useful information for understanding the dynamic interactions between phages and biofilms and also designing the effective phage-based control system as an alterative strategy against biofilms.


Asunto(s)
Bacteriófagos , Salmonella typhimurium , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Plancton
16.
Artículo en Inglés | MEDLINE | ID: mdl-35258449

RESUMEN

A polyhydroxybutyrate (PHB)-degrading actinomycete, strain SFB5AT, was identified as a species of Streptomyces based on its membrane fatty acid profile and the presence of ll-diaminopimelic acid in the cell wall. It formed sporulating mycelia on most agar media, but flat or wrinkled, moist colonies on trypticase soy agar. Spores were smooth, cylindrical, and borne on long, straight to flexuous chains. It produced a light brown diffusible pigment, but not melanin. Comparison of genomic digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values indicated that strain SFB5AT was related to Streptomyces litmocidini JCM 4394T, Streptomyces vietnamensis GIMV4.0001T, Streptomyces nashvillensis JCM 4498T and Streptomyces tanashiensis JCM 4086T, plus 11 other species. However, the dDDH and ANI values were well below the species differentiation thresholds of <70 and <95 %, respectively; also, multilocus sequence analysis distances exceeded the species threshold of 0.007. Moreover, strain SFB5AT differed from the other species in pigmentation and its ability to catabolize arabinose. Strain SFB5AT and 11 of its 15 closest relatives degraded PHB and have genes for extracellular, short-chain-length denatured polyhydroxyalkanoate depolymerases. These enzymes from strain SFB5AT and its closest relatives had a type 1 catalytic domain structure, while those from other relatives had a type 2 structure, which differs from type one in the position of a consensus histidine in the active site. Thus, phenotypic and genotypic differences suggest that strain SFB5AT represents a new species of Streptomyces, for which we propose the name Streptomyces nymphaeiformis sp. nov. The type strain is SFB5AT (=NRRL B-65520T=DSM 112030T).


Asunto(s)
Ácidos Grasos , Streptomyces , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/genética
17.
Environ Res ; 204(Pt C): 112336, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34740626

RESUMEN

The main aim of the study was to degrade poly-ß-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets. A total of 75 bacteria were isolated after 60 days of incubation. The zone of clearance varied between 12 ± 1 mm and 19 ± 2 mm. Two bacterial strains (Nitrobacter vulgaris SW1 and Pseudomonas aeruginosa KS10) showed rapid PHB degradation activity on agar plates. Plate screening experiments confirmed PHB degrading ability of P. aeruginosa KS10 and N. vulgaris SW1. Biodegrading potential improved after 72 h fermentation period. The bacteria produced depolymerase and enzyme activity was maximum after 72 h. The sequencing batch biofilm reactor (SBBR) co-cultured with N. vulgaris SW1 and P. aeruginosa KS10 was operated to remove PHB from the wastewater. Biofilm in the reactor degraded PHB and the production of polyhydroxybutyrate depolymerase influenced on PHB degradation. Polyhydroxybutyrate degradation improved continuously and maximum degradation (95.6%) was achieved after 8 days. The degradation of biopolymers help to reduce environmental pollution associated with the petroleum based polymers.


Asunto(s)
Aguas del Alcantarillado , Agua , Biodegradación Ambiental , Biopelículas , Hidrolasas de Éster Carboxílico/metabolismo
18.
Biosci Biotechnol Biochem ; 86(10): 1482-1484, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35881488

RESUMEN

The degradation of polyethylene terephthalate (PET) by modified PET depolymerase has recently attracted much attention. We found that mixing a PET depolymerase with non-genetically modified Thermus sp. can enhance its PET-degrading activity by 7.7-fold. This approach is attractive for constructing a sustainable PET recycling system.


Asunto(s)
Enzimas , Tereftalatos Polietilenos , Enzimas/metabolismo , Tereftalatos Polietilenos/metabolismo , Thermus
19.
Bioprocess Biosyst Eng ; 45(4): 711-720, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35039943

RESUMEN

Polyethylene terephthalate (PET) waste has caused serious environmental pollution. Recently, PET depolymerization by enzymes with PET-depolymerizing activity has received attention as a solution to recycle PET. An engineered variant of leaf-branch compost cutinase (293 amino acid), ICCG (Phe243Ile/Asp238Cys/Ser283Cys/Tyr127Gly), showed excellent depolymerizing activity toward PET at 72 °C, which was the highest depolymerizing activity and thermo-stability ever reported in previous works. However, this enzyme was only produced by heterologous expression in the cytoplasm of Escherichia coli, which requires complex separation and purification steps. To simplify the purification steps of ICCG, we developed a secretory production system using Bacillus subtilis and its 174 types of N-terminal signal peptides. The recombinant strain expressing ICCG with the signal peptide of serine protease secreted the highest amount (9.4 U/mL) of ICCG. We improved the production of ICCG up to 22.6 U/mL (85 µg/mL) by performing batch fermentation of the selected strain in 2 L working volume using a 5-L fermenter, and prepared the crude ICCG solution by concentrating the culture supernatant. The recombinant ICCG successfully depolymerized a PET film with 37% crystallinity at 37 °C and 70 °C. In this study, we developed a secretory production system of the engineered cutinase with PET-depolymerizing activity to obtain high amounts of the enzyme by a relatively simple purification method. This system will contribute to the recycling of PET waste via a more efficient and environmentally friendly method based on enzymes with PET-depolymerizing activity.


Asunto(s)
Bacillus subtilis , Tereftalatos Polietilenos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361776

RESUMEN

This study describes two novel bacteriophages infecting members of the Bacillus pumilus group. Even though members of the group are not recognized as pathogenic, several strains belonging to the group have been reported to cause infectious diseases in plants, animals and humans. Bacillus pumilus group species are highly resistant to ultraviolet radiation and capable of forming biofilms, which complicates their eradication. Bacteriophages Novomoskovsk and Bolokhovo were isolated from soil samples. Genome sequencing and phylogenetic analysis revealed that the phages represent two new species of the genus Andromedavirus (class Caudoviricetes). The phages remained stable in a wide range of temperatures and pH values. A host range test showed that the phages specifically infect various strains of B. pumilus. The phages form clear plaques surrounded by halos. Both phages Novomoskovsk and Bolokhovo encode proteins with pectin lyase domains-Putative depolymerases. Obtained in a purified recombinant form, the proteins produced lysis zones on the lawn of a B. pumilus strain. This suggests that Novomoskovsk and Bolokhovo may be effective for the eradication of B. pumilus biofilms.


Asunto(s)
Bacillus pumilus , Bacillus , Bacteriófagos , Humanos , Bacillus pumilus/genética , Filogenia , Rayos Ultravioleta , Bacteriófagos/genética , Bacillus/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda