Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 173(7): 1622-1635.e14, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29779948

RESUMEN

Degrons are minimal elements that mediate the interaction of proteins with degradation machineries to promote proteolysis. Despite their central role in proteostasis, the number of known degrons remains small, and a facile technology to characterize them is lacking. Using a strategy combining global protein stability (GPS) profiling with a synthetic human peptidome, we identify thousands of peptides containing degron activity. Employing CRISPR screening, we establish that the stability of many proteins is regulated through degrons located at their C terminus. We characterize eight Cullin-RING E3 ubiquitin ligase (CRL) complex adaptors that regulate C-terminal degrons, including six CRL2 and two CRL4 complexes, and computationally implicate multiple non-CRLs in end recognition. Proteome analysis revealed that the C termini of eukaryotic proteins are depleted for C-terminal degrons, suggesting an E3-ligase-dependent modulation of proteome composition. Thus, we propose that a series of "C-end rules" operate to govern protein stability and shape the eukaryotic proteome.


Asunto(s)
Proteoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Biología Computacional/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Leupeptinas/farmacología , Sistemas de Lectura Abierta/genética , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Proteolisis , Proteoma/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
2.
Mol Cell ; 70(4): 602-613.e3, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775578

RESUMEN

The proteolysis-assisted protein quality control system guards the proteome from potentially detrimental aberrant proteins. How miscellaneous defective proteins are specifically eliminated and which molecular characteristics direct them for removal are fundamental questions. We reveal a mechanism, DesCEND (destruction via C-end degrons), by which CRL2 ubiquitin ligase uses interchangeable substrate receptors to recognize the unusual C termini of abnormal proteins (i.e., C-end degrons). C-end degrons are mostly less than ten residues in length and comprise a few indispensable residues along with some rather degenerate ones. The C-terminal end position is essential for C-end degron function. Truncated selenoproteins generated by translation errors and the USP1 N-terminal fragment from post-translational cleavage are eliminated by DesCEND. DesCEND also targets full-length proteins with naturally occurring C-end degrons. The C-end degron in DesCEND echoes the N-end degron in the N-end rule pathway, highlighting the dominance of protein "ends" as indicators for protein elimination.


Asunto(s)
Procesamiento Proteico-Postraduccional , Receptores de Citocinas/metabolismo , Selenoproteínas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Dominios Proteicos , Proteolisis , Receptores de Citocinas/genética , Proteasas Ubiquitina-Específicas/genética
3.
Mol Cell ; 72(5): 813-822.e4, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30526872

RESUMEN

Aberrant proteins can be deleterious to cells and are cleared by the ubiquitin-proteasome system. A group of C-end degrons that are recognized by specific cullin-RING ubiquitin E3 ligases (CRLs) has recently been identified in some of these abnormal polypeptides. Here, we report three crystal structures of a CRL2 substrate receptor, KLHDC2, in complex with the diglycine-ending C-end degrons of two early-terminated selenoproteins and the N-terminal proteolytic fragment of USP1. The E3 recognizes the degron peptides in a similarly coiled conformation and cradles their C-terminal diglycine with a deep surface pocket. By hydrogen bonding with multiple backbone carbonyls of the peptides, KLHDC2 further locks in the otherwise degenerate degrons with a compact interface and unexpected high affinities. Our results reveal the structural mechanism by which KLHDC2 recognizes the simplest C-end degron and suggest a functional necessity of the E3 to tightly maintain the low abundance of its select substrates.


Asunto(s)
Antígenos de Neoplasias/química , Glicilglicina/química , Selenoproteínas/química , Proteasas Ubiquitina-Específicas/química , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicilglicina/metabolismo , Células HEK293 , Humanos , Cinética , Simulación del Acoplamiento Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Spodoptera , Especificidad por Sustrato , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
4.
Curr Med Imaging ; 19(10): 1133-1143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36125821

RESUMEN

BACKGROUND: For the accurate positioning of surgical tools, conventional intraoperative navigation systems have been developed to recognize the relationship between target positions and the tools. However, since an internal organ is deformed during the operation, registration between realtime two-dimensional (2D) ultrasound images and three-dimensional (3D) CT or MRI images is not always effective. Therefore, this study developed image registration between 2D and 3D ultrasound images considering deformation for tracking target vessel movement in the liver. METHODS: 3D ultrasound image was obtained in advance with 3D coordinates, including the target vessel. Then real-time 2D images and ultrasound probe position were simultaneously acquired using a 3D position sensor. We applied multiple image resolution registration, where rapid and fine optimizations can be expected at higher and lower levels, respectively. Meanwhile, the gradient descent method was adopted for the optimization, which determines the relative arrangements to obtain maximum similarity between 2D and 3D images. We experimentally established resolution level parameters using a phantom before applying it to track liver blood vessel movements in a normal healthy subject. RESULTS: Comparing the 2D images and the registered images, although the approach has some limitations in tracking large displacement, we confirmed that the cross-section of the target blood vessel was clearly visualized. CONCLUSION: This method has the potential for an ultrasound therapy targeting blood vessels under natural respiration conditions.


Asunto(s)
Imagenología Tridimensional , Hígado , Humanos , Ultrasonografía , Imagenología Tridimensional/métodos , Hígado/diagnóstico por imagen , Movimiento , Imagen por Resonancia Magnética/métodos
6.
Artículo en Zh | WPRIM | ID: wpr-568765

RESUMEN

The testis and its relative structures of 101 normal male fetuses (fetal-age 12-33 weeks) have been studied in this paper. The results were as follows: 1. The data of fetal growth of testis, epididymis and gubernaculum were given. 2. It has been found that there is no scrotum ligament existed. The gubernaculum is a mesenchyme tissue and is cylindrical pyramid in shape. Objectively, we cannot find any anatomical structure acted as a tractor in testis descending. 3. It has been found that the testis descends in chinese fetus between the 21th and the 25th week of fetal-age. It was completed in all of them after the 26th week. The time is more advanced than that of the traditional conception which referred to be between 7 th and 8 th month. 4. It has been confirmed that once the descent started, the testis run through inguinal canal rapidly. Generally, it seems that the testicular descent in left side is earlier than that in the right. From the above findings, the author suggests that it be necessary to correct the traditional conception in the Chinese anatomy book.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda