Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Crit Rev Toxicol ; 54(2): 92-122, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363552

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.


Asunto(s)
Bifenilos Policlorados , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Hidroxilación , Sulfatos/toxicidad , Sulfatos/metabolismo , Contaminación Ambiental , Sustancias Peligrosas
2.
Plant Cell Environ ; 46(3): 669-687, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581782

RESUMEN

Trichomes are epidermal outgrowths on plant shoots. Their roles in protecting plants against herbivores and in the biosynthesis of specialized metabolites have long been recognized. Recently, studies are increasingly showing that trichomes also play important roles in water absorption and metal detoxication, with these roles having important implications for ecology, the environment, and agriculture. However, these two functions of trichomes have been largely overlooked and much remains unknown. In this review, we show that the trichomes of 37 plant species belonging to 14 plant families are involved in water absorption, while the trichomes of 33 species from 13 families are capable of sequestering metals within their trichomes. The ability of trichomes to absorb water results from their decreased hydrophobicity compared to the remainder of the leaf surface as well as the presence of special structures for collecting and absorbing water. In contrast, the metal detoxication function of trichomes results not only from the good connection of their basal cells to the underlying vascular tissues, but also from the presence of metal-chelating ligands and transporters within the trichomes themselves. Knowledge gaps and critical future research questions regarding these two trichome functions are highlighted. This review improves our understanding on trichomes.


Asunto(s)
Tricomas , Agua , Agua/metabolismo , Tricomas/metabolismo , Metales/metabolismo , Hojas de la Planta/metabolismo , Plantas
3.
Pestic Biochem Physiol ; 191: 105361, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963933

RESUMEN

The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.


Asunto(s)
Citrus , Hemípteros , Plaguicidas , Animales , Hemípteros/fisiología , Tiametoxam , Ninfa/genética , Reproducción/genética , Citrus/genética
4.
Ecotoxicol Environ Saf ; 242: 113935, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35999758

RESUMEN

Yellow mealworm (Tenebrio molitor) is a supplementary protein source for food and feed and represents a promising solution to manage grain contaminated with Aflatoxin B1 (AFB1). In this study, AFB1 present in different concentrations in wheat bran was treated and removed via bioconversion by yellow mealworm of different instars, with emphasis on the bioconversion performance and metabolism of AFB1. Upon application of wheat bran spiked with 100 µg/kg AFB1 to 5th-6th instar yellow mealworms, the conversion rate of AFB1 was up to 87.85 %. Low level of AFB1 (< 2 µg/kg) was accumulated in the larval bodies, and the survival rate, development and nutrition contents of yellow mealworm were not significantly affected. It was revealed that 1 kg of wheat bran contaminated with AFB1 increased the weight of yellow mealworms from 138 g to 469 g, containing approximately 103 g of protein. The bioconversion of AFB1 by yellow mealworms led to generation of 13 metabolites in the frass and 3 metabolites in the larvae. AFB1 was detoxicated and removed via phase I metabolism comprising reduction, dehydrogenation, hydration, demethylation, hydroxylation, decarbonylation and ketoreduction, followed by phase II metabolism involving conjugation of amino acid, glucoside and glutathione (GSH). The toxicity of AFB1 metabolites was deemed lower than that of AFB1 according to their structures. This study provides a sustainable approach and theoretical foundation on using yellow mealworms for cleaner grain contamination management and valuable larval protein production via bioconversion of food and feed contaminated by AFB1.


Asunto(s)
Tenebrio , Aflatoxina B1 , Animales , Fibras de la Dieta , Grano Comestible/metabolismo , Larva/metabolismo , Proteínas/metabolismo , Tenebrio/metabolismo
5.
Molecules ; 27(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335160

RESUMEN

Colchicine (COL) is a well-known plant alkaloid long used for medical purposes due to the selective anti-inflammatory effect on acute gouty arthritis. It is also a kind of mitosis toxin with strong inhibitory effects of cell division and is therefore being applied to the treatment of various cancers. However, this product shows a variety of adverse effects that are significantly correlated with the dosage and have attracted much attention. For the first time, the present work obtained a new insight into the gastrointestinal toxicity of colchicine analogues by molecular docking analysis, which was based on the 3D structure of intestinal tight junction protein ZO-1 and the ligand library containing dozens of small-molecule compounds with the basic skeleton of COL and its metabolites. The binding energy and mode of protein-ligand interaction were investigated to better understand the structure-toxicity relationships of COL analogues and the mechanism of action as well. Cluster analysis clearly demonstrated the strong correlation between the binding energy and toxicity of ligand molecules. The interaction mode further revealed that the hydrogen bonding (via the C-7 amide or C-9 carbonyl group) and hydrophobic effect (at ring A or C) were both responsible for ZO-1-related gastrointestinal toxicity of COL analogues, while metabolic transformation via phase I and/or phase II reaction would significantly attenuate the gastrointestinal toxicity of colchicine, indicating an effective detoxication pathway through metabolism.


Asunto(s)
Colchicina , Intestinos , Colchicina/química , Ligandos , Simulación del Acoplamiento Molecular , Proteína de la Zonula Occludens-1
6.
Bull Entomol Res ; 110(1): 115-122, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31138336

RESUMEN

The Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains, China. The periods of host colonization and larval overwintering are two important phases in the life cycle of bark beetles, as it is during these periods that they have to contend with host plant defences and periods of intense cold, respectively. Although during different seasons, the females and males of Chinese white pine beetles show varying tolerances to host plant terpenoids, the sex ratio and survival physiology condition of the two beetle generations are unknown. We investigated the sex ratio of individuals, and also examined the body mass, energy stores, and detoxication enzymes of males and females in each of the two generations in order to determine the overall population stability of each generation. We identified a female-biased sex ratio among adults in both generations. Furthermore, patterns of body mass, energy stores, and detoxication enzymes were found to differ between the two sexes and two seasons. Compared with the males, the females have a larger body mass and higher amounts of stored lipids, which are assumed to be adaptations designed to overcome host resistance and facilitate subsequent oviposition.


Asunto(s)
Escarabajos/fisiología , Estaciones del Año , Razón de Masculinidad , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Metabolismo Energético , Femenino , Masculino
7.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3961-3966, 2020 Aug.
Artículo en Zh | MEDLINE | ID: mdl-32893595

RESUMEN

The enzymes CYP1 A2 and CYP3 A4 were measured by building a "Cocktail" probe drug and the incubation system of liver microsomes. The compatibility of Aconiti Lateralis Radix Praeparata combined with dried Rehmanniae Radix on CYP450 enzyme protein and gene expression was explored from the level of protein and molecular biology. It explored the molecular mechanism of compatibility detoxication of Aconiti Lateralis Radix Praeparata to provide scientific support for clinical safe and effective application of Aconiti Lateralis Radix Praeparata. The CYP450 enzyme activity was determined by using "Cocktail" probe drugs. The content of CYP450 enzyme was measured by CO reduction of differential spectrum method. The mRNA expression of CYP1 A2 and CYP3 A4 enzyme was detected by RT-PCR technology. Compared with the blank group, the CYP1 A2 and CYP3 A4 enzyme activity and mRNA expression were increased in the dried Rehmanniae Radix combined with Aconiti Lateralis Radix Praeparata group with significant differences(P<0.05), while the CYP3 A4 enzyme activity and mRNA expression were no influence in the Aconiti Lateralis Radix Praeparata group. The CYP3 A4 enzyme activity and mRNA expression were increased in the dried Rehmanniae Radix and the dried Rehmanniae Radix combined with Aconiti Lateralis Radix Praeparata group, and there were significant differences(P<0.05). The content of CYP450 enzyme was decreased in the Aconiti Lateralis Radix Praeparata group, contributed to extremely significant difference(P<0.01). The content of CYP450 enzyme was increased in the dried Rehmanniae Radix and the dried Rehmanniae Radix combined with Aconiti Lateralis Radix Praeparata group, and there were significant differences(P<0.05). The CYP1 A2 and CYP3 A4 enzyme activity and gene expression were enhanced after dried Rehmanniae Radix combined with Aconiti Lateralis Radix Praeparata. The metabolism of toxic ingredients of Aconiti Lateralis Radix Praeparata was accelerated to reach an effect of detoxication. The detoxication mechanism of compatibility of Aconiti Lateralis Radix Praeparata was verified from the viewpoint of liver metabolic enzymes.


Asunto(s)
Aconitum , Medicamentos Herbarios Chinos , Hígado
8.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3695-3704, 2019 Sep.
Artículo en Zh | MEDLINE | ID: mdl-31602941

RESUMEN

Aconitums,represented by Aconite Radix,Aconiti Lateralis Radix Praeparata and Aconiti Kusnezoffh Folium,is a kind of traditional Chinese medicine with a long medicinal history in China. They possess the significant toxicity and therapeutic effects simultaneously. Their potent effects of rescuing from dying,curing rheumatism,anti-inflammation,and analgesia make Aconitums highly regarded by physicians and pharmacists of various dynasties. However,countless poisoning cases caused by an irrational use of Aconitums were reported. In case of improper application and exceeding the therapeutic window,the acute cardiotoxicity and neurotoxicity would be caused,seriously threatening health and even life of the users. Therefore,the clinical application of Aconitums is limited to some extent. To avoid its toxicity and ensure the safety of medicinal use,Aconitums is usually used in a form of its processed products instead of the crude herbs,or combined with some other traditional Chinese medicines in a normal prescription. A proper processing and compatibility method can detoxicate its severe toxicity,reduce the adverse reactions,and also significantly broaden the indications and application range of Aconitums. This provides a guarantee for the secondary exploitation and utilization of Aconitums. In this paper,the traditional processing methods of Aconitums,along with the modern advancement were reviewed,and the mechanisms of detoxification by processing and compatibility were also illuminated. The physical detoxification mode and chemical detoxification mode were found as two main detoxification ways for Aconitums. In particular,the detoxification by hydrolysis,ion-pair,and saponification were three main means. The mechanisms illustrated in this paper can be a reference to the development of modern processing method and a guidance for appropriate use of Aconitums in clinical application.


Asunto(s)
Aconitum/química , Composición de Medicamentos/métodos , Medicamentos Herbarios Chinos/química , Aconitum/toxicidad , China , Medicamentos Herbarios Chinos/toxicidad , Medicina Tradicional China , Hojas de la Planta/química , Raíces de Plantas/química
9.
J Environ Manage ; 206: 633-641, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29132086

RESUMEN

To develop an efficient and environmental-friendly approach to detoxicate nickel (Ni) and fluoranthene co-contaminated soil, the combined application of Coprinus comatus (C. comatus) with Serratia sp. FFC5 and/or Enterobacter sp. E2 was investigated. The pot experiment tested the influences of bacterial inoculation on the growth of C. comatus, content of Ni in C. comatus, Ni speciation in soil, fluoranthene dissipation, soil enzymatic activities, bacterial population and community structure. With the inoculation of bacteria, the fresh weights of C. comatus, concentration of Ni in C. comatus and the dissipation rates of fluoranthene were increased by 17.73-29.38%, 68.97-204.97% and 34.84-60.90%, respectively. Notably, results illustrated that the co-inoculation of FFC5 and E2 showed better effect in biomass enhancement, Ni accumulation and fluoranthene dissipation than solitary inoculation. Simultaneously, higher soil enzymatic and microbiological activities suggested that the integrated detoxication method of bacteria and C. comatus could improve soil quality. Therefore, we can infer that bacterial inoculation strengthened detoxication effect of C. comatus in Ni-fluoranthene co-contaminated soil, indicating that the combined application of C. comatus and bacteria can be an efficient alternative for detoxicating Ni and fluoranthene co-contaminated soil.


Asunto(s)
Biodegradación Ambiental , Coprinus , Fluorenos/aislamiento & purificación , Níquel/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Bacterias , Suelo , Microbiología del Suelo
10.
Biochim Biophys Acta ; 1850(4): 742-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25542299

RESUMEN

BACKGROUND: Organic isothiocyanates (ITCs) are produced by plants, in which they are released from glucosinolates by myrosinase. ITCs are generally toxic and serve as a chemical defense against herbivorous insects and against infections by microorganisms. In mammalian tissues subtoxic concentrations of ITCs can provide protective effects against cancer and other diseases partially by induction of glutathione transferases (GSTs) and other detoxication enzymes. Thus, human consumption of edible plants rich in ITCs is presumed to provide health benefits. ITCs react with intracellular glutathione to form dithiocarbamates, catalyzed by GSTs. Formation of glutathione conjugates is central to the biotransformation of ITCs and leads to a route for their excretion. Clearly, the emergence of ITC conjugating activity in GSTs is essential from the biological and evolutionary perspective. METHODS: In the present investigation an active-site-focused mutant library of GST A2-2 has been screened for enzyme variants with enhanced ITC activity. RESULTS: Significantly superior activities were found in 34 of the approximately 2000 mutants analyzed, and the majority of the superior GSTs featured His and Gly residues in one of the three active-site positions subjected to mutagenesis. CONCLUSIONS: We explored the propensity of GSTs to obtain altered substrate selectivity and moreover, identified a specific pattern of mutagenesis in GST for enhanced PEITC detoxification, which may play an important role in the evolution of adaptive responses in organisms subjected to ITCs. GENERAL SIGNIFICANCE: The facile acquisition of enhanced ITC activity demonstrates that this important detoxication function can be promoted by numerous evolutionary trajectories in sequence space.


Asunto(s)
Glutatión Transferasa/metabolismo , Isoenzimas/metabolismo , Isotiocianatos/farmacología , Catálisis , Dominio Catalítico , Dieta , Glutatión Transferasa/química , Humanos , Isoenzimas/química , Especificidad por Sustrato
11.
Biochim Biophys Acta ; 1850(9): 1877-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26026470

RESUMEN

BACKGROUND: The genome of poplar (Populus trichocarpa) encodes 81 glutathione transferases (GSTs) annotated in eight distinct classes. The tau class is considered the most versatile in the biotransformation of xenobiotics and is composed of 58 GSTs. Two of the enzymes, GSTU16 and GSTU45, have particular interest since their expression is induced by exposure of poplar tissues to 2,4,6-trinitrotoluene (TNT) and could potentially be involved in the metabolism of this toxic environmental contaminant. RESULTS: DNA encoding these GSTs was synthesized and the proteins were heterologously expressed in Escherichia coli and the purified enzymes were characterized. MAJOR CONCLUSIONS: GSTU16 assayed with a number of conventional GST substrates showed the highest specific activity (60µmolmin⁻¹ mg⁻¹) with phenethyl isothiocyanate, 150-fold higher than that with CDNB. By contrast, GSTU45 showed CDNB as the most active substrate (3.3µmolmin⁻¹ mg⁻¹) whereas all of the 16 alternative substrates tested yielded significantly lower activities. Homology modeling suggested that the aromatic residues Phe10 and Tyr107 in the active site of GSTU16 are promoting the high activity with PEITC and other substrates with aromatic side-chains. Nonetheless, TNT was a poor substrate for GSTU16 as well as for GSTU45 with a specific activity of 0.05nmolmin⁻¹ mg⁻¹ for both enzymes. GENERAL SIGNIFICANCE: GSTU16 and GSTU45 do not play a major role in the degradation of TNT in poplar.


Asunto(s)
Glutatión Transferasa/metabolismo , Trinitrotolueno/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Inducción Enzimática/efectos de los fármacos , Glutatión Transferasa/química , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato
12.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2089-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457432

RESUMEN

Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Šresolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Glutatión Transferasa/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Drosophila/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estabilidad Proteica , Alineación de Secuencia , Temperatura
13.
Drug Metab Rev ; 47(4): 401-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26610047

RESUMEN

This article pays homage to the life and work of a veritable pioneer in toxicology and drug metabolism, namely a Welshman, Richard Tecwyn Williams, FRS. Professor Williams, or RT as he was known, made major contributions to knowledge about the metabolism and toxicology of drugs and xenobiotics during a scientific career spanning nearly 50 years. Author or coauthor of close to 400 research articles and reviews, including a classic book, entitled Detoxication Mechanisms, Williams and his research school investigated virtually all aspects of drug metabolism, especially conjugations. In particular, the concepts of phase 1 and phase II metabolic pathways were introduced by Williams; the biliary excretion of drugs was extensively studied as were species differences in drug metabolism and detoxication. Besides investigating the metabolism of many pharmaceutical drugs, such as sulfonamides and thalidomide, Williams and his group investigated the disposition and fate in the body of organic pesticides and recreational drugs of abuse, such as amphetamine, methamphetamine and lysergic acid diethylamide (LSD).


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Farmacología/historia , Toxicología/historia , Historia del Siglo XX , Reino Unido
14.
Toxicol Mech Methods ; 25(2): 81-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403683

RESUMEN

Sertoli cells around germ cells are considered a barrier that protects spermatogenesis from harmful influences. The transporter multidrug-resistance-associated protein 1 (MRP1) is a xenobiotic efflux pump that can export glutathione S-conjugated metabolites and xenobiotics from cells. In this study, the Mrp1 gene was stably knocked down in a mouse Sertoli cell line (TM4) using lentivirus vector-mediated RNA interference (RNAi) technology. Four shRNA interference sequences were chosen and designed to screen for the most effective shRNA in candidate cells. The results indicate that lentivirus vectors with high titres were generated and successfully transfected into TM4 cells with high efficiency. Puromycin was added to the culture medium to maintain constant selection during the establishment of the stable cell lines. The expression levels of Mrp1 mRNA and MRP1 protein in stably transfected TM4 cells were significantly lower than those in the control group. Importantly, the transport activity of MRP1 to Calcein and 5-carboxyseminaptharhodafluor (SNARF-1) were significantly reduced because of MRP1 silencing. Moreover, the silencing of the Mrp1 gene in the transfected TM4 cell lines remained highly stable for more than 6 months. These results suggest that the lentivirus-based RNAi stably knocks down the expression of the Mrp1 gene in the established TM4 cell line. This transfected TM4 cell line will provide a new and powerful tool to study the underlying mechanism of MRP1-mediated drug resistance and detoxication in the reproductive system.


Asunto(s)
Técnicas de Silenciamiento del Gen , Lentivirus/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células de Sertoli/metabolismo , Transfección/métodos , Animales , Benzopiranos/metabolismo , Línea Celular , Regulación hacia Abajo , Fluoresceínas/metabolismo , Vectores Genéticos , Masculino , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Naftoles/metabolismo , ARN Interferente Pequeño/genética , Rodaminas/metabolismo
15.
Genome ; 57(4): 209-21, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25036535

RESUMEN

The reniform nematode (RN), a major agricultural pest particularly on cotton in the United States, is among the major plant-parasitic nematodes for which limited genomic information exists. In this study, over 380 Mb of sequence data were generated from pooled DNA of four adult female RNs and assembled into 67,317 contigs, including 25,904 (38.5%) predicted coding contigs and 41,413 (61.5%) noncoding contigs. Most of the characterized repeats were of low complexity (88.9%), and 0.9% of the contigs matched with 53.2% of GenBank ESTs. The most frequent Gene Ontology (GO) terms for molecular function and biological process were protein binding (32%) and embryonic development (20%). Further analysis showed that 741 (1.1%), 94 (0.1%), and 169 (0.25%) RN genomic contigs matched with 1328 (13.9%), 1480 (5.4%), and 1330 (7.4%) supercontigs of Meloidogyne incognita, Brugia malayi, and Pristionchus pacificus, respectively. Chromosome 5 of Caenorhabditis elegans had the highest number of hits to the RN contigs. Seven putative detoxification genes and three carbohydrate-active enzymes (CAZymes) involved in cell wall degradation were studied in more detail. Additionally, kinases, G protein-coupled receptors, and neuropeptides functioning in physiological, developmental, and regulatory processes were identified in the RN genome.


Asunto(s)
Genoma de los Helmintos , Genómica , Nematodos/genética , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Gossypium/parasitología , Anotación de Secuencia Molecular , Nematodos/clasificación , Análisis de Secuencia de ADN , Transcriptoma
16.
Fish Shellfish Immunol ; 37(2): 278-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24594009

RESUMEN

Microcystins (MCs) are secondary metabolites produced by cyanobacteria. Oxidative stress is considered the major cytotoxic mechanism of microcystin-LR (MCLR). Quercetin (QE) is a flavonoid that can eliminate reactive oxygen species (ROS) and elicit anti-inflammatory and anti-apoptotic effects. This study determined the regulatory effect of QE on the cytotoxicity and oxidative stress of Carassius auratus lymphocytes induced by 1 µg/L MCLR in vitro after 24 h. MCLR-mediated cytotoxicity and ROS formation in fish lymphocytes were suppressed by QE in a concentration-dependent manner. In addition, QE enhanced the endogenous antioxidant defense system and the Bax/Bcl-2 ratio to protect fish lymphocytes against oxidative stress and apoptosis induced by MCLR. Glutathione levels and catalase activities increased by approximately 3.9- and 2-fold, respectively, in the QE treatment group (1000 µg/L) compared with the MCLR treatment group. The percentage of apoptosis in the only MCLR treatment group was 59% whereas that in the control group was 23%. The percentage of apoptosis in the high-dose QE treatment group (1000 µg/L) was 29%, lower by nearly half compared with the only MCLR treatment group. QE (1000 µg/L) effectively inhibited the expression of caspase-3 protein by nearly 43% compared with the only MCLR treatment group. The results obtained clearly indicate that QE can effectively prevent MCLR-induced immunotoxicity by eliminating oxidative stress and blocking the mitochondrial apoptotic pathway in fish lymphocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Carpa Dorada/metabolismo , Linfocitos/efectos de los fármacos , Microcistinas/toxicidad , Quercetina/farmacología , Animales , Antioxidantes/metabolismo , Toxinas Marinas , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
Bioresour Technol ; 399: 130591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490463

RESUMEN

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Asunto(s)
Lacasa , Polyporaceae , Colorantes de Rosanilina , Trametes , Compuestos de Tritilo , Lacasa/genética , Lacasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Colorantes/metabolismo , Biodegradación Ambiental
18.
Int J Biol Macromol ; 264(Pt 1): 130448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428756

RESUMEN

As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.


Asunto(s)
Celulosa , Carbón Orgánico , Zea mays , Celulosa/química , Zea mays/química , Polimerizacion , Colorantes
19.
mBio ; : e0159124, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189748

RESUMEN

Clostridioides difficile, the major cause of antibiotic-associated diarrhea, is a strict anaerobic, sporulating Firmicutes. However, during its infectious cycle, this anaerobe is exposed to low oxygen (O2) tensions, with a longitudinal decreasing gradient along the gastrointestinal tract and a second lateral gradient with higher O2 tensions in the vicinity of the cells. A plethora of enzymes involved in oxidative stress detoxication has been identified in C. difficile, including four O2-reducing enzymes: two flavodiiron proteins (FdpA and FdpF) and two reverse rubrerythrins (revRbr1 and revRbr2). Here, we investigated the role of the four O2-reducing enzymes in the tolerance to increasing physiological O2 tensions and air. The four enzymes have different, yet overlapping, spectra of activity. revRbr2 is specific to low O2 tensions (<0.4%), FdpA to low and intermediate O2 tensions (0.4%-1%), revRbr1 has a wider spectrum of activity (0.1%-4%), and finally FdpF is more specific to tensions > 4% and air. These different O2 ranges of action partly arise from differences in regulation of expression of the genes encoding those enzymes. Indeed, we showed that revrbr2 is under the dual control of σA and σB. We also identified a regulator of the Spx family that plays a role in the induction of fdp and revrbr genes upon O2 exposure. Finally, fdpF is regulated by Rex, a regulator sensing the NADH/NAD+ ratio. Our results demonstrate that the multiplicity of O2-reducing enzymes of C. difficile is associated with different roles depending on the environmental conditions, stemming from a complex multi-leveled network of regulation. IMPORTANCE: The gastrointestinal tract is a hypoxic environment, with the existence of two gradients of O2 along the gut, one longitudinal anteroposterior decreasing gradient and one proximodistal increasing from the lumen to the epithelial cells. O2 is a major source of stress for an obligate anaerobe such as the enteropathogen C. difficile. This bacterium possesses a plethora of enzymes capable of scavenging O2 and reducing it to H2O. In this work, we identified the role of the four O2-reducing enzymes in the tolerance to the physiological O2 tensions faced by C. difficile during its infectious cycle. These four enzymes have different spectra of action and protect the vegetative cells over a large range of O2 tensions. These differences are associated with a distinct regulation of each gene encoding those enzymes. The complex network of regulation is crucial for C. difficile to adapt to the various O2 tensions encountered during infection.

20.
J Pharm Biomed Anal ; 234: 115573, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37459834

RESUMEN

Tripterygium wilfordii (TW), a well-known traditional Chinese medicine, was widely used in the treatment of autoimmune disorders and inflammatory diseases. However, the clinical use of TW was limited by severe toxicities, such as hepatotoxicity and nephrotoxicity. Our previous studies indicated that roasting was an effective approach for reducing TW-induced toxicity. After roasting, celastrol was completely decomposed, partially converted into 1-hydroxy-2,5,8-trimethyl-9-fluorenone and the total alkaloids content were significantly reduced. However, the detoxication mechanisms of roasting on TW were poorly unknown. This study aimed to explore the toxicity and detoxification mechanisms of TW after roasting based on urine metabolomics. Promising biomarkers were evaluated by multiple comparison analyses. Sixteen toxicity biomarkers were identified between control group and total extract group. Twelve toxicity biomarkers were identified between control group and total alkaloids group. Eight toxicity biomarkers were identified between control group and celastrol group. These metabolites were mainly involved in seven metabolic pathways, summarized as pentose and glucuronate interconversions, lipid metabolism (sphingolipid metabolism, glycerophospholipid metabolisms, fatty acid biosynthesis and steroid hormone biosynthesis) and amino acid metabolism (taurine and hypotaurine metabolism, tryptophan metabolism). After roasting, the toxicities of total extract, total alkaloids and celastrol were relieved by ameliorative serum parameters and pathological changes in hepatic and renal tissues which revealed that the reduction of celastrol and total alkaloids played important roles in the detoxification of roasting on TW. Furthermore, roasting regulated the levels of fourteen potential biomarkers in the total extract group, ten potential biomarkers in the total alkaloids group and seven candidate biomarkers in the celastrol group to normal levels. Biological pathway analysis revealed that roasting may ameliorate TW-induced metabolic disorders in pentose and glucuronate interconversions, lipid metabolism and amino acid metabolism. This study provided evidence for the application of roasting in TW.


Asunto(s)
Alcaloides , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Espectrometría de Masas en Tándem , Tripterygium/química , Metabolómica , Biomarcadores , Alcaloides/toxicidad , Aminoácidos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda