Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anim Biotechnol ; 34(4): 921-934, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34871537

RESUMEN

This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of ß-adrenergic receptor (ß-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of ß-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, ß-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Receptores Activados del Proliferador del Peroxisoma , Animales , Porcinos , Bucladesina/farmacología , Bucladesina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos
2.
Arch Biochem Biophys ; 653: 39-49, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29963999

RESUMEN

Mannose-binding lectin (MBL)-Associated Serine Proteases (MASP)-1 and 3, key enzymes in the lectin complement pathway of innate immune response, are also expressed in glioma cell lines. We investigated MASP-1 and MASP-3 expression during dibutyryl cyclic AMP (dbcAMP)- or Interleukin-6 (rIL-6)-induced astrocytic differentiation of C6 glioma cells. Our results demonstrate that C6 cells express basal levels of MASP-1 and MASP-3 and following exposure to dbcAMP or IL-6, a consistent MASP-1 and MASP-3 mRNA up-regulation was found, with a behavior similar to that showed by the fibrillary acidic protein (GFAP). Furthermore, in cell conditioned media, rIL-6 stimulated MASP-3 secretion which reached levels similar to those obtained by dbcAMP treatment. Moreover, the detection of a 46-kDa MASP-3 suggested its processing to the mature form in the extracellular cell medium. Interestingly, the H89 PKA inhibitor, mostly affected dbcAMP-induced MASP-1 and MASP-3 mRNA levels, compared to that of rIL-6, suggesting that cAMP/PKA pathway contributes to MASP-1 and MASP-3 up-regulation. MASP-1 and MASP-3 expression increase was concomitant with dbcAMP- or rIL-6-induced phosphorylation of STAT3. Our findings suggest that the increase in intracellular cAMP concentration or rIL-6 stimulation can play a role in innate immunity enhancing MASP-1 and MASP-3 expression level in C6 glioma cells.


Asunto(s)
Neoplasias Encefálicas/enzimología , Bucladesina/farmacología , Glioma/enzimología , Interleucina-6/farmacología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Glioma/inmunología , Glioma/patología , Inmunidad Innata/efectos de los fármacos , Isoquinolinas/farmacología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Sulfonamidas/farmacología
3.
Pestic Biochem Physiol ; 151: 53-58, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30704713

RESUMEN

G-Protein-Coupled Receptors (GPCRs) are an underdeveloped target in the search for agrochemicals with octopamine receptors, a GPCR, being the target of a single insecticide/acaricide class (formamidines). The evolution of insecticide resistance has resulted in the need to identify new or underutilized targets for the development of agrochemicals, with the goal of controlling arthropod pests that affect agriculture or human and animal health. The insect cholinergic system has been a fruitful target for the development of insecticides/acaricides viz. acetylcholinesterase inhibitors and agonists/modulators of the nicotinic acetylcholine receptor. However, the muscarinic acetylcholine receptors (mAChRs), which are GPCRs, have not been successfully developed as a target for agrochemicals. Others have recently identified three subtypes of insect mAChRs in Drosophila melanogaster, and extracellular recordings from transected D. melanogaster larval central nervous system (CNS) were performed to investigate the electrogenesis of the octopaminergic and muscarinic systems. Octopamine (10 µM) resulted in a sustained neuroexcitation during a 30 min exposure, and neuroexcitation after 21 min was blocked by octopamine receptor antagonist, phentolamine (100 µM). Exposure of this preparation to the non-selective mAChR agonist, pilocarpine (10 µM), resulted in a biphasic response, characterized by neuroexcitation followed by a decrease in the CNS firing rate below initial control levels. This biphasic effect was antagonized by the classical mAChR antagonist atropine (10 µM). It was also found that atropine (10 µM) blocked octopamine's sustained neuroexcitation, indicating the possibility of cross-talk between these two GPCR pathways.


Asunto(s)
Drosophila melanogaster/metabolismo , Larva/metabolismo , Octopamina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Atropina/farmacología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Colforsina/farmacología , CMP Cíclico/análogos & derivados , CMP Cíclico/metabolismo , Drosophila melanogaster/efectos de los fármacos , Electrofisiología , Larva/efectos de los fármacos , Fentolamina/farmacología , Pilocarpina/farmacología
4.
Anim Biosci ; 37(6): 1007-1020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419539

RESUMEN

OBJECTIVE: We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. METHODS: Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. RESULTS: A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. CONCLUSION: Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.

5.
Front Endocrinol (Lausanne) ; 14: 1139303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033214

RESUMEN

Expression of patatin-like phospholipase domain containing protein 7 (PNPLA7), also known as neuropathy target esterase-related esterase (NRE), a lysophospholipase, increases with fasting and decreases with feeding in mouse skeletal muscle, indicating it is regulated by insulin, counterregulatory hormones, such as glucocorticoids and catecholamines, and/or nutrients. In cultured mouse adipocytes insulin reduces Pnpla7 expression, underscoring the possibility that insulin regulates PNPLA7 in skeletal muscle. The first aim of this study was to establish whether PNPLA7 is functionally expressed in cultured human skeletal muscle cells. The second aim was to determine whether PNPLA7 is regulated by insulin, glucocorticoids, cAMP/protein kinase A pathway, and/or glucose. Cultured human skeletal muscle cells expressed PNPLA7 mRNA and protein. Gene silencing of PNPLA7 in myoblasts reduced the phosphorylation of 70 kDa ribosomal protein S6 kinase and ribosomal protein S6 as well as the abundance of α1-subunit of Na+,K+-ATPase and acetyl-CoA carboxylase, indirectly suggesting that PNPLA7 is functionally important. In myotubes, insulin suppressed PNPLA7 mRNA at 1 g/L glucose, but not at low (0.5 g/L) or high (4.5 g/L) concentrations. Treatment with synthetic glucocorticoid dexamethasone and activator of adenylyl cyclase forskolin had no effect on PNPLA7 regardless of glucose concentration, while dibutyryl-cAMP, a cell-permeable cAMP analogue, suppressed PNPLA7 mRNA at 4.5 g/L glucose. The abundance of PNPLA7 protein correlated inversely with the glucose concentrations. Collectively, our results highlight that PNPLA7 in human myotubes is regulated by metabolic signals, implicating a role for PNPLA7 in skeletal muscle energy metabolism.


Asunto(s)
Glucosa , Insulina , Humanos , Ratones , Animales , Insulina/farmacología , Insulina/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucocorticoides/metabolismo , ARN Mensajero/metabolismo
6.
Front Cell Dev Biol ; 11: 1111705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819101

RESUMEN

The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of ß-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor ß3 (TGFß3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFß3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFß3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.

7.
J Tradit Complement Med ; 12(2): 195-205, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528476

RESUMEN

Chronic insulin resistance suppresses muscle and liver response to insulin, which is partially due to impaired vesicle trafficking. We report here that a formula consisting of resveratrol, ferulic acid and epigallocatechin-3-O-gallate is more effective in ameliorating muscle and hepatic insulin resistance than the anti-diabetic drugs, metformin and AICAR. The formula enhanced glucose transporter-4 (GLUT4) translocation to the plasma membrane in the insulin-resistant muscle cells by regulating both insulin-independent (calcium and AMPK) and insulin-dependent (PI3K) signaling molecules. Particularly, it regulated the subcellular location of GLUT4 through endosomes to increase glucose uptake under insulin-resistant condition. Meanwhile, this phytochemicals combination increased glycogen synthesis and decreased glucose production in the insulin-resistant liver cells. On the other hand, this formula also showed anti-diabetic potential by the reduction of lipid content in the myotubes, hepatocytes, and adipocytes. This study demonstrated that the three phenolic compounds in the formula could work in distinct mechanisms and enhance both insulin-dependent and independent vesicles trafficking and glucose transport mechanisms to improve carbohydrate and lipid metabolism.

8.
Virus Res ; 227: 1-5, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27677464

RESUMEN

HIV-1 reservoirs remain a major barrier to HIV-1 eradication. Although combination antiretroviral therapy (cART) can successfully reduce viral replication, it cannot reactivate HIV-1 provirus in this reservoir. Therefore, HIV-1 provirus reactivation strategies by cell activation or epigenetic modification are proposed for the eradication of HIV-1 reservoirs. Although treatment with the protein kinase A (PKA) activator cyclic AMP (cAMP) or epigenetic modifying agents such as histone deacetylase inhibitors (HDACi) alone can induce HIV-1 reactivation in latently infected cells, the synergism of these agents has not been fully evaluated. In the present study, we observed that treatment with 500µM of dibutyryl-cAMP, 1µM of vorinostat, or 1µM of trichostatin A alone effectively reactivated HIV-1 in both ACH2 and NCHA1 cells latently infected with HIV-1 without cytotoxicity. In addition, treatment with the PKA inhibitor KT5720 reduced the increased HIV-1 p24 level in the supernatant of these cells. After dibutyryl-cAMP treatment, we found an increased level of the PKA substrate phosphorylated cyclic AMP response element-binding protein. When we treated cells with a combination of dibutyryl-cAMP and vorinostat or trichostatin A, the levels of HIV-1 p24 in the supernatant and levels of intracellular HIV-1 p24 were dramatically increased in both ACH2 and NCHA1 cells compared with those treated with a single agent. These results suggest that combined treatment with a PKA activator and an HDACi is effective for reactivating HIV-1 in latently infected cells, and may be an important approach to eradicate HIV-1 reservoirs.


Asunto(s)
Bucladesina/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Provirus/efectos de los fármacos , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Factores de Transcripción Activadores/metabolismo , Línea Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Fosforilación
9.
Neuropharmacology ; 114: 146-155, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923568

RESUMEN

CX3CL1 is a chemokine for which neurons constitute its primary source within the brain. Besides acting as a chemokine, CX3CL1 regulates multiple processes and is known to inhibit microglial activation. Because of this, CX3CL1 is considered as a messenger used by neurons to communicate with microglia. Similarly, the neurotransmitter noradrenaline reduces microglial activation and production of neurotoxic agents. Based on this, the regulation of neuronal CX3CXL1 by noradrenaline was analyzed. In primary cortical neurons, noradrenaline induced the accumulation of CX3CL1 protein and mRNA. Noradrenaline also increased CX3CL1 in its soluble form despite the inhibition of the activity and synthesis of ADAM10 and ADAM17, the main proteases known to cleave CX3CL1 from the neuronal membrane. Noradrenaline-treated neurons displayed a higher degree of dendritic arborization and a characteristic accumulation of CX3CL1 in the dendritic bifurcation zones. The soluble CX3CL1 produced by neurons after noradrenaline treatment, reduced the accumulation of nitrites in microglia. These findings indicate that NA anti-inflammatory actions are mediated by neuronal CX3CL1. In addition, CX3CL1 seems to be involved in the development of neuronal processes stimulated by noradrenaline.


Asunto(s)
Quimiocina CXCL1/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Norepinefrina/fisiología , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Animales , Quimiocina CX3CL1/metabolismo , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Norepinefrina/administración & dosificación , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 2/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-27255639

RESUMEN

Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.


Asunto(s)
Ácido Araquidónico/análisis , Astrocitos/química , Bucladesina/farmacología , Ácido Palmítico/análisis , Animales , Ácido Araquidónico/química , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ácido Palmítico/química
11.
World J Gastroenterol ; 22(12): 3341-54, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27022216

RESUMEN

AIM: To investigate whether the regulation of aquaporin 3 (AQP3) and AQP9 induced by Auphen and dibutyryl cAMP (dbcAMP) inhibits hepatic tumorigenesis. METHODS: Expression of AQP3 and AQP9 was detected by Western blot, immunohistochemistry (IHC), and RT-PCR in HCC samples and paired non-cancerous liver tissue samples from 30 hepatocellular carcinoma (HCC) patients. A xenograft tumor model was used in vivo. Nine nude mice were divided into control, Auphen-treated, and dbcAMP-treated groups (n = 3 for each group). AQP3 and AQP9 protein expression after induction of xenograft tumors was detected by IHC and mRNA by RT-PCR analysis. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and histological evaluation were used to detect apoptosis of tumor cells, and the concentration of serum α-fetoprotein (AFP) was measured using RT-PCR and an ELISA kit. RESULTS: The volumes and weights of tumors decreased significantly in the Auphen- and dbcAMP-treated mice compared with the control mice (P < 0.01). The levels of AQP3 were significantly lower in the Auphen treatment group, and levels of AQP9 were significantly higher in thedbcAMP treatment mice than in the control mice (P < 0.01). The reduction of AQP3 by Auphen and increase of AQP9 by dbcAMP in nude mice suppressed tumor growth of HCC, which resulted in reduced AFP levels in serum and tissues, and apoptosis of tumor cells in the Auphen- and dbcAMP-treated mice, when compared with control mice (P < 0.01). Compared with para-carcinoma tissues, AQP3 expression increased in tumor tissues whereas the expression of AQP9 decreased. By correlating clinicopathological and expression levels, we demonstrated that the expression of AQP3 and AQP9 was correlated with clinical progression of HCC and disease outcomes. CONCLUSION: AQP3 increases in HCC while AQP9 decreases. Regulation of AQP3 and AQP9 expression by Auphen and dbcAMP inhibits the development and growth of HCC.


Asunto(s)
Antineoplásicos/farmacología , Acuaporina 3/metabolismo , Acuaporinas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , CMP Cíclico/análogos & derivados , Neoplasias Hepáticas/tratamiento farmacológico , Compuestos Orgánicos de Oro/farmacología , Animales , Apoptosis/efectos de los fármacos , Acuaporina 3/genética , Acuaporinas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , CMP Cíclico/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , alfa-Fetoproteínas/metabolismo
12.
Data Brief ; 7: 940-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27081671

RESUMEN

Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity.

13.
Theriogenology ; 83(3): 344-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25442019

RESUMEN

Porcine IVF faces various problems such as incomplete cytoplasmic maturation of the oocyte and polyspermy. Previous studies proved the importance of cAMP in regulating nuclear and cytoplasmic maturation of oocytes. This study investigated the effect of the cAMP-modulating agents 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cAMP sodium salt (dbcAMP) on several parameters during in vitro production of porcine embryos. First, we wanted to see if oocyte collection in IBMX could meiotically arrest oocytes and, as such, improve synchronization of nuclear and cytoplasmic maturation. To this end, cumulus-oocyte complexes (COCs) were collected from gilts in HEPES-buffered Tyrode balanced salt solution medium with 0.5-mM IBMX or without IBMX. At the end of oocyte collection, the effect of IBMX on chromatin configuration was evaluated. However, no differences could be observed in nuclear configuration between IBMX- and IBMX+ oocytes (P > 0.05). Second, we added dbcAMP during IVM to improve cytoplasmic maturation and evaluated cumulus expansion (lack of adhesion), a disintegrin and metalloproteinase with thrombospondin-like repeats (ADAMTS-1) levels in cumulus cells, fertilization, and blastocyst rates. Cumulus-oocyte complexes were matured in modified North Carolina State University medium 37 with or without 1-mM dbcAMP. Frozen-thawed, epididymal, boar spermatozoa were used for IVF. After IVF, presumed zygotes were cultured for 7 days in North Carolina State University medium 23. Penetration rate decreased in dbcAMP+ (57.3%) compared with dbcAMP- (67.8%), but the polyspermy rate also decreased (43.3% vs. 53.4%, respectively) leading to an increased normal fertilization rate (56.7% vs. 46.6%, respectively; P < 0.05). Only 7.2% of the COCs showed adhesion in dbcAMP+ which was lower than 15.7% in dbcAMP- (P < 0.05) probably because of an upregulation of the ADAMTS-1 protein by dbcAMP. When the adherent oocytes were removed during maturation, no difference could be detected between the blastocyst rate of dbcAMP- and dbcAMP+ (17.1% and 21.0% on Day 7, respectively; P > 0.05). In conclusion, the use of IBMX during collection did not cause a meiotic arrest. Using dbcAMP during IVM caused a greater normal fertilization rate, a lower rate of adherent COCs during IVM, higher levels of ADAMTS-1 in cumulus cells, and an equal blastocyst rate after screening out adherent COCs. These findings contribute to a better understanding of cAMP involvement in porcine oocyte maturation and provide a basis to develop an improved system with less polyspermy and higher blastocyst rates.


Asunto(s)
1-Metil-3-Isobutilxantina/farmacología , Bucladesina/farmacología , AMP Cíclico/metabolismo , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Inhibidores de Fosfodiesterasa/farmacología , Porcinos/fisiología , Animales , Desarrollo Embrionario , Fertilización/efectos de los fármacos , Fertilización In Vitro/métodos , Técnicas de Maduración In Vitro de los Oocitos/métodos
14.
Mol Immunol ; 57(2): 171-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24141182

RESUMEN

Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by ß-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans.


Asunto(s)
Butiratos/metabolismo , AMP Cíclico/metabolismo , Inmunidad Innata/efectos de los fármacos , beta-Defensinas/biosíntesis , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Células Cultivadas , Pollos , Coleus , Colforsina/administración & dosificación , Colforsina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Yeyuno , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
FEBS Lett ; 588(1): 65-70, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24269887

RESUMEN

StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis.


Asunto(s)
Colesterol/análogos & derivados , Macrófagos/metabolismo , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Bucladesina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Colesterol/farmacología , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Estrés Oxidativo , Fosfoproteínas/genética , Interferencia de ARN , Factores de Tiempo
16.
Gene ; 531(2): 355-62, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24008018

RESUMEN

Myocyte enhancer factor 2C (MEF2C) belongs to the MEF2 transcription factors. All products of MEF2 genes have a common amino-terminal DNA binding and dimerization domain. All four vertebrate MEF2 gene transcripts are also alternatively spliced. In the present study we identify two novel MEF2C splice variants, named VP and VP2. These variants are generated by the skipping of exon α. The identified α- variants are ubiquitously expressed, although at very low levels compared to the α+ variants. The existence of MEF2C α- variants gave us the opportunity to study for the first time the function of exon α. Transactivation experiments show that the presence of exon α induces a reduction of transcription levels. Moreover, α- variants are significantly expressed during neuronal cell differentiation, indicating a putative role of these variants in development.


Asunto(s)
Diferenciación Celular/genética , Exones , Activación Transcripcional/fisiología , Exones/genética , Exones/fisiología , Variación Genética/fisiología , Células HEK293 , Células HeLa , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Regiones Promotoras Genéticas/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Distribución Tisular , Células Tumorales Cultivadas
17.
Reprod Toxicol ; 42: 95-101, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23969005

RESUMEN

Previous studies have shown that phthalate exposure can suppress steroidogenesis. However, the affected components of the steroidogenic pathway, and the mechanisms involved, remain uncertain. We show that incubating MA-10 Leydig cells with mono-(2-ethylhexyl) phthalate (MEHP) resulted in reductions in luteinizing hormone (LH)-stimulated cAMP and progesterone productions. cAMP did not decrease in response to MEHP when the cells were incubated with cholera toxin or forskolin. Incubation of MEHP-treated cells with dibutyryl-cAMP, 22-hydroxycholesterol or pregnenolone inhibited the reductions in progesterone. Increased levels of reactive oxygen species (ROS) occurred in response to MEHP. In cells in which intracellular glutathione was depleted by buthionine sulfoximine pretreatment, the increases in ROS and decreases in progesterone in response to MEHP treatment were exacerbated. These results indicate that MEHP inhibits MA-10 Leydig cell steroidogenesis by targeting LH-stimulated cAMP production and cholesterol transport, and that a likely mechanism by which MEHP acts is through increased oxidative stress.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Células Intersticiales del Testículo/efectos de los fármacos , Progesterona/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Dietilhexil Ftalato/toxicidad , Regulación hacia Abajo , Glutatión/metabolismo , Células Intersticiales del Testículo/metabolismo , Hormona Luteinizante/farmacología , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
18.
FEBS Open Bio ; 3: 459-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24251112

RESUMEN

In the central nervous system, alteration of glial cell differentiation can affect brain functions. Polychlorinated biphenyls (PCBs) are persistent environmental chemical contaminants that exert neurotoxic effects in glial and neuronal cells. We examined the effects of a commercial mixture of PCBs, Aroclor1254 (A1254) on astrocytic differentiation of glial cells, using the rat C6 cell line as in vitro model. The exposure for 24 h to sub-toxic concentrations of A1254 (3 or 9 µM) impaired dibutyryl cAMP-induced astrocytic differentiation as showed by the decrease of glial fibrillary acidic protein (GFAP) protein levels and inhibition in change of cell morphology toward an astrocytic phenotype. The A1254 inhibition was restored by the addition of a protein kinase C (PKC) inhibitor, bisindolylmaleimide (bis), therefore indicating that PCBs disturbed the cAMP-induced astrocytic differentiation of C6 cells via the PKC pathway. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) is essential for cAMP-induced transcription of GFAP promoter in C6 cells. Our results indicated that the exposure to A1254 (3 or 9 µM) for 24 h suppressed cAMP-induced STAT3 phosphorylation. Moreover, A1254 reduced cAMP-dependent phosphorylation of STAT3 requires inhibition of PKC activity. Together, our results suggest that PCBs induce perturbation in cAMP/PKA and PKC signaling pathway during astrocytic differentiation of glial cells.

19.
ASN Neuro ; 2(4): e00041, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20730033

RESUMEN

Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-ß(1-40) (1 µmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-ß-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-ß treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Astrocitos/patología , Comunicación Celular/genética , Uniones Comunicantes/genética , Uniones Comunicantes/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/síntesis química , Animales , Astrocitos/metabolismo , Células Cultivadas , Femenino , Uniones Comunicantes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/patología , Fragmentos de Péptidos/síntesis química , Ratas , Ratas Wistar
20.
ASN Neuro ; 2(2): e00030, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20396375

RESUMEN

Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.


Asunto(s)
Astrocitos/patología , Comunicación Celular/fisiología , Diabetes Mellitus Experimental/patología , Uniones Comunicantes/patología , Hiperglucemia/patología , Animales , Astrocitos/metabolismo , Células Cultivadas , Conexina 26 , Conexinas , Diabetes Mellitus Experimental/metabolismo , Uniones Comunicantes/metabolismo , Hiperglucemia/metabolismo , Masculino , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda