Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biomed Chromatogr ; 38(6): e5861, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501361

RESUMEN

Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.


Asunto(s)
Fraxinus , Extractos Vegetales , Fraxinus/química , Cromatografía Líquida de Alta Presión/métodos , Análisis Multivariante , Reproducibilidad de los Resultados , Extractos Vegetales/química , Modelos Lineales , Espectrometría de Masas/métodos , Límite de Detección , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 968-980, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621904

RESUMEN

This study aims to characterize and identify the chemical constituents in 11 parts of Forsythia suspensa by using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with a self-established chemical constituent database, including leaves, flowers, fruits, green F. suspensa, old F. suspensa, and seeds. The quality attributes and differences of different parts of F. suspensa were evaluated by principal component analysis, partial least square discriminant analysis, and other stoichiometric methods. A total of 79 compounds were identified, including 13 phenylethanol glycosides, 10 lignans, 12 flavonoids, 10 organic acids, 14 terpenoids, and 20 other types of compounds. Among them, 34 compounds were the main variables of difference between the different parts of F. suspensa, and the content of each component was relatively higher in the leaves and green F. suspensa. The LPS-induced inflammation model of RAW264.7 cells was applied to study the anti-inflammatory activity of the extracts of the different parts of F. suspensa and the main constituents. The results show that the extracts of green F. suspensa, flower, twig, and stem exhibited anti-inflammatory activity, and the constituents such as forsythoside A, phyllyrin, phillygenin, and(+)-pinoresinol-ß-D-glucopyranoside could significantly inhibit anti-inflammatory activity released by NO. The chemical constituent in different parts of F. suspensa is analyzed comprehensively, and the anti-inflammatory activity is evaluated in this study, which provides a reference for the development and comprehensive utilization of F. suspensa resources.


Asunto(s)
Forsythia , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Forsythia/química , Cromatografía Líquida de Alta Presión , Flavonoides , Antiinflamatorios/farmacología
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1217-1224, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621968

RESUMEN

To investigate the quality differences between the seeds and husks of Amomum villosum and explore the rationality of using the seeds without husks, this study determined the content of protocatechuic acid, vanillic acid, epicatechin, quercitrin, volatile oil, water extract, and ethanol extract. The 2,2-diphenyl-1-picrylhydrazyl(DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), and hydroxyl radical scavenging activities were determined to evaluate the antioxidant activities of seeds and husks. The quality differences between the seeds and husks were assessed through orthogonal partial least squares-discriminant analysis(OPLS-DA) and analytic hierarchy process(AHP) combined with the entropy weight method(EWM). Significant differences(P<0.05) were observed in all 10 indicators between the seeds and husks. The levels of epicatechin, quercetin, and volatile oil were higher in the seeds, whereas those of protocatechuic acid, vanillic acid, water extract, and ethanol extract were higher in the husks. The seeds showed stronger scavenging ability against DPPH and ABTS radicals, while the husks showed a stronger scavenging effect on hydroxyl radicals. OPLS-DA significantly discriminated between the seeds and husks. Furthermore, volatile oil, water extract, DPPH radical scavenging rate, quercitrin, ABTS radical scavenging rate, hydroxyl radical scavenging rate, and vanillic acid were selected as the main differential indicators by variable importance in projection(VIP). Comprehensive scores calculated by AHP combined with EWM indicated that the seeds were superior to husks in terms of overall quality. However, there are still some dominant components and a certain antioxidant effect in the husks. Therefore, it is suggested to using Amomi Fructus with a certain amount of husks or utilizing the husks for other purposes.


Asunto(s)
Amomum , Benzotiazoles , Catequina , Hidroxibenzoatos , Aceites Volátiles , Ácidos Sulfónicos , Radical Hidroxilo , Ácido Vanílico , Antioxidantes/química , Agua , Etanol , Aceites Volátiles/química
4.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4097-4105, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37802777

RESUMEN

To explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/análisis , Raíces de Plantas/química , Espectrometría de Masas en Tándem/métodos , Panax/química , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Azúcares
5.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3448-3461, 2023 Jul.
Artículo en Zh | MEDLINE | ID: mdl-37474982

RESUMEN

A comprehensive analytical method based on ultra-fast liquid chromatography coupled with triple quadrupole/linear ion trap tandem mass spectrometry(UFLC-QTRAP-MS/MS) was established for simultaneous determination of the content of 45 bioactive constituents including flavonoids, alkaloids, amino acids, phenolic acids, and nucleosides in Epimedium brevicornum. The multiple bioactive constituents in leaves, petioles, stems and rhizomes of E. brevicornum were analyzed. The gradient elution was performed at 30 ℃ in an XBridge~® C_(18) column(4.6 mm×100 mm, 3.5 µm) with 0.4% formic acid aqueous solution-acetonitrile as the mobile phase at a flow rate of 0.8 mL·min~(-1). Single factor experiment and response surface methodology were employed to optimize the extraction conditions. Multivariate statistical analyses including systematic cluster analysis(SCA), principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and one-way analysis of variance(One-way ANOVA) were carried out to classify the samples from different parts and identify different constituents. Grey relation analysis(GRA) and entropy weight-TOPSIS analysis were performed to build a multi-index comprehensive evaluation model for different parts of E. brevicornum. The results showed that there was a good relationship between the mass concentrations of 45 constituents and the corresponding peak areas, with the correlation coefficients(r) not less than 0.999 0. The precision, repeatability, and stability of the established method were good for all the target constituents in this study, with the relative standard deviations(RSDs) less than 5.0%(0.62%-4.9%) and the average recovery of 94.51%-105.7%. The above results indicated that the bioactive constituents varied in different parts of E. brevicornum, and the overall quality followed the trend of leaves > petioles > rhizomes > stems. This study verified the rationality of the Chinese Pharmacopoeia(2020 edition) stipulating that the medicinal part of E. brevicornum is the leaf. Moreover, our study indicated that the rhizome had the potential for medicinal development. The established method was accurate and reliable, which can be used to comprehensive evaluate and control the quality of E. brevicornum. This study provides data reference for clarifying the medicinal parts and rationally utilizing the resources of E. brevicornum.


Asunto(s)
Epimedium , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Cromatografía Liquida , Análisis Multivariante
6.
Zhongguo Zhong Yao Za Zhi ; 48(2): 430-442, 2023 Jan.
Artículo en Zh | MEDLINE | ID: mdl-36725233

RESUMEN

The chemical constituents in stem leaf, root, and flower of Ixeris sonchifolia were identified by the ultra performance li-quid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS~n). The separation was performed on an Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) with a mobile phase of water(containing 0.1% formic acid, A)-acetonitrile(B) with gradient elution. With electrospray ionization source, the data of 70% methanol extract from stem leaf, root and flower of I. sonchifolia were collected by high-resolution full-scan Fourier transform spectroscopy, data dependent acquisition, precursor ion scan, and selected ion monitoring in the negative and positive ion modes. The compounds were identified based on accurate molecular weight, retention time, fragment ions, comparison with reference standard, Clog P and references. A total of 131 compounds were identified from the 70% methanol extract of I. sonchifolia, including nucleosides, flavonoids, organic acids, terpenoids, and phenylpropanoids, and 119, 110, and 126 compounds were identified from the stem leaf, root and flower of I. sonchifolia, respectively. In addition, isorhamnetin, isorhamnetin-7-O-sambubioside and caffeylshikimic acid were discovered from I. sonchifolia for the first time. This study comprehensively analyzed and compared the chemical constituents in different parts of I. sonchifolia, which facilitated the discovery of effective substances and the development and application of medicinal material resources of I. sonchifolia.


Asunto(s)
Asteraceae , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Metanol , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas
7.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615203

RESUMEN

Parishin compounds are rare polyphenolic glucosides mainly found in the rhizome of the traditional Chinese medicinal plant, Gastrodia elata. These constituents are reported to have several biological and pharmacological activities. In the present study, two novel parishin derivatives not previously reported as plant-based phytochemicals were identified from a twig of Maclura tricuspidata (MT) and two new compounds were elucidated as 1-(4-(ß-d-glucopyranosyloxy)benzyl)-3-hydroxy-3-methylpentane-1,5-dioate (named macluraparishin E) and 1,3-bis(4-(ß-d-glucopyranosyloxy)benzyl)-3-hydroxy-3-methylpentane- 1,5-dioate (macluraparishin C), based on the experimental data obtained by UV-Visible (UV-Vis) spectroscopy, high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and nuclear magnetic resonance (NMR) spectroscopy. Additionally, gastrodin, parishin A and parishin B were positively identified by spectroscopic evidence and the comparison of HPLC retention time with the corresponding authentic standards. Gastrodin, parishin A and parishin B, macluraparishin E and macluraparishin C were found to be the most abundant constituents in the MT twig. The compositions and contents of these constituents were found to vary depending on the different parts of the MT plant. In particular, the contents of parishin A, parishin B, macluraparishin C and macluraparishin E were higher in the twig, bark and root than in the leaves, xylem and fruit.


Asunto(s)
Gastrodia , Maclura , Plantas Medicinales , Extractos Vegetales/química , Plantas Medicinales/química , Cromatografía Líquida de Alta Presión/métodos , Gastrodia/química
8.
Environ Monit Assess ; 194(9): 627, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916936

RESUMEN

The element found at the highest amount in onion samples was sulfur, and followed by K, Ca, P, Na, and Mg in decreasing order. While K contents of white onion parts are determined between 1406.31 (outer most edible) and 1758.72 mg/kg (inner most edible), K contents of the parts of brown onions were measured between 1779.79 (head) and 2495.89 mg/kg (inner most edible). Also, K amounts of purple onions were detected between 2248.73 (shell) and 3064.64 mg/kg (middle edible). In addition, in general, the highest P, S, and K were detected in the middle edible and inner most edible parts of the edible onion samples. While the highest Ca content was localized in brown and purple onion roots, it was most localized in the shell part of white onions. In edible white and brown onions, the highest Na content was found in the inner most edible part. Fe amounts of white and brown onion samples were identified between 7.94 (head) and 20.41 mg/kg (root) to 9.56 (middle edible) and 23.67 mg/kg (head), respectively. Also, Fe contents of the parts of purple onions varied between 13.04 (shell) and 20.61 mg/kg (inner most edible). While the highest Fe and Zn are determined in the middle edible part in edible white onions, the highest Fe and Zn were determined in the outer most edible part in brown onions. In general, the most heavy metals were localized in the bark, head, and root parts of the onions. This had a positive effect on the safe edibility of onions. The heavy metal detected in the highest amount in onion samples was arsenic, followed by Cr, Al, Ni, Se, Ba, Pb, Mo, Co, and Cd in descending order. Generally, purple onion type showed maximum values. Therefore, results of the present study seen to be beneficial in the way that it allowed us to selected some varieties with nutrition value that could be interesting to introduce in gastronomy.


Asunto(s)
Metales Pesados , Cebollas , Monitoreo del Ambiente/métodos , Metales Pesados/análisis
9.
Molecules ; 26(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806084

RESUMEN

Six parts of lotus (seeds, leaves, plumule, stamens, receptacles and rhizome nodes) are herbal medicines that are listed in the Chinese Pharmacopoeia. Their indications and functions have been confirmed by a long history of clinical practice. To fully understand the material basis of clinical applications, UPLC-QToF-MS combined with the UNIFI platform and multivariate statistical analysis was used in this study. As a result, a total of 171 compounds were detected and characterized from the six parts, and 23 robust biomarkers were discovered. The method can be used as a standard protocol for the direct identification and prediction of the six parts of lotus. Meanwhile, these discoveries are valuable for improving the quality control method of herbal medicines. Most importantly, this was the first time that alkaloids were detected in the stamen, and terpenoids were detected in the cored seed. The stamen is a noteworthy part because it contains the greatest diversity of flavonoids and terpenoids, but research on the stamen is rather limited.


Asunto(s)
Flavonoides/análisis , Lotus/química , Terpenos/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
10.
Molecules ; 24(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897728

RESUMEN

The objective of the present study was to compare the effects of the immunological activity of various parts (root/stem/leaf/flower/seed) of five-year-old ginseng on the immune system of immunosuppressive mice. Immunosuppression was induced by cyclophosphamide (CTX) in the mouse model, whereas levamisole hydrochloride tablet (LTH) was used for the positive control group. We found that ginseng root (GRT), ginseng leaf (GLF), and ginseng flower (GFR) could relieve immunosuppression by increased viability of NK cells, enhanced immune organ index, improved cell-mediated immune response, increased content of CD4⁺ and ratio of CD4⁺/CD8⁺, and recovery of macrophage function, including carbon clearance, phagocytic rate, and phagocytic index, in immunodeficient mice. However, ginseng stem (GSM) and ginseng seed (GSD) could only enhance the thymus indices, carbon clearance, splenocyte proliferation, NK cell activities, and the level of IL-4 in immunosuppressed mice. In CTX-injected mice, GRT and GFR remarkably increased the protein expression of Nrf2, HO-1, NQO1, SOD1, SOD2, and CAT in the spleen. As expected, oral administration of GRT and GFR markedly enhanced the production of cytokines, such as IL-1ß, IL-4, IL-6, IFN-γ, and TNF-α, compared with the CTX-induced immunosuppressed mice, and GRT and GFR did this relatively better than GSM, GLF, and GSD. This study provides a theoretical basis for further study on different parts of ginseng.


Asunto(s)
Ciclofosfamida/toxicidad , Inmunosupresores/toxicidad , Panax/química , Extractos Vegetales/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Flores/química , Huésped Inmunocomprometido , Terapia de Inmunosupresión , Células Asesinas Naturales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Ovinos
11.
Molecules ; 24(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979080

RESUMEN

Trichosanthes kirilowii Maxim. is one of the original plants for traditional Chinese medicines Trichosanthis Fructus, Trichosanthis Semen, Trichosanthis Pericarpium and Trichosanthis Radix. Amino acids, nucleosides and carbohydrates are usually considered to have nutritional value and health-care efficacy. In this study, methods involving high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD), UV-visible spectrophotometry and ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) were established for quantifying carbohydrates (fructose, glucose, stachyose, raffinose and polysaccharide), fourteen nucleosides and twenty one amino acids. Moreover, sixty-three samples from nine different parts, including pericarp, seed, fruit pulp, stem, leaf, main root, main root bark, lateral root and lateral root bark of T. kirilowii from different cultivated varieties were examined. The established methods were validated with good linearity, precision, repeatability, stability, and recovery. The results showed that the average content of total amino acids in roots (15.39 mg/g) and root barks (16.38 mg/g) were relatively higher than for others. Contents of nucleosides in all parts of T. kirilowii were below 1.5 mg/g. For carbohydrates, fruit pulp has a higher content than others for glucose (22.91%), fructose (20.63%) and polysaccharides (27.29%). By using partial least-squared discriminate analysis (PLS-DA), Variable importance in the projection (VIP) plots and analysis of variance (ANOVA) analysis, the characteristic components of the different organs (fruit, stems and leaves, roots) were found. This analysis suggested there were potential medicinal and nutritive health care values in various parts of the T. kirilowii, which provided valuable information for the development and utilization of T. kirilowii.


Asunto(s)
Aminoácidos/química , Carbohidratos/química , Nucleósidos/química , Trichosanthes/química , Aminoácidos/aislamiento & purificación , Carbohidratos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Dispersión Dinámica de Luz , Frutas/química , Humanos , Medicina Tradicional China , Nucleósidos/aislamiento & purificación , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Semillas/química , Espectrometría de Masas en Tándem
12.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4661-4669, 2019 Nov.
Artículo en Zh | MEDLINE | ID: mdl-31872662

RESUMEN

The aim of this study was to clarify the main components of the green leaves of Callicarpa nudiflora,and to compare the difference of main components between the green leaves,yellow leaves,branches and seeds. In this study,ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) coupled with the UNIFI scientific information system was adopted. And the identification of the main chemical components of C. nudiflora was combined with reference materials,literatures and online database. In addition,the difference of main components was analyzed by Progenesis QI,principal component analysis(PCA) and orthogonal partial least squares discriminant(OPLS-DA). A total of 57 compounds were identified in green leaves,including phenylpropanoids,flavonoids and iridoids. Among them,the relative content of phenylethanoid glycosides was highest. Furthermore,the PCA analysis showed that there are significant differences in main components of the branches and other parts of C. nudiflora. Combined with OPLS-DA analysis,nudifloside,parvifloroside B and ß-hydroxysamioside were selected as the characteristic components for distinguish the leaves and branches of C. nudiflora. Our study provided a scientific basis for the collection and identification of C. nudiflora.


Asunto(s)
Callicarpa , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Flavonoides
13.
Molecules ; 23(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029488

RESUMEN

Panax notoginseng is famous for its important therapeutic effects and commonly used worldwide. The active ingredients saponins have distinct contents in different tissues of P. notoginseng, and they may be related to the expression of key genes in the synthesis pathway. In our study, high-performance liquid chromatography results indicated that the contents of protopanaxadiol-(Rb1, Rc, Rb2, and Rd) and protopanaxatriol-type (R1, Rg1, and Re) saponins in below ground tissues were higher than those in above ground tissues. Clustering dendrogram and PCA analysis suggested that the below and above ground tissues were clustered into two separate groups. A total of 482 and 882 unigenes were shared in the below and above ground tissues, respectively. A total of 75 distinct expressions of CYPs transcripts (RPKM ≥ 10) were detected. Of these transcripts, 38 and 37 were highly expressed in the below ground and above ground tissues, respectively. RT-qPCR analysis showed that CYP716A47 gene was abundantly expressed in the above ground tissues, especially in the flower, whose expression was 31.5-fold higher than that in the root. CYP716A53v2 gene was predominantly expressed in the below ground tissues, especially in the rhizome, whose expression was 20.1-fold higher than that in the flower. Pearson's analysis revealed that the CYP716A47 expression was significantly correlated with the contents of ginsenoside Rc and Rb2. The CYP716A53v2 expression was associated with the saponin contents of protopanaxadiol-type (Rb1 and Rd) and protopanaxatriol-type (R1, Rg1, and Re). Results indicated that the expression patterns of CYP716A47 and CYP716A53v2 were correlated with the distribution of protopanaxadiol-type and protopanaxatriol-type saponins in P. notoginseng. This study identified the pivotal genes regulating saponin distribution and provided valuable information for further research on the mechanisms of saponin synthesis, transportation, and accumulation.


Asunto(s)
Panax notoginseng/química , Panax notoginseng/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saponinas/química , Saponinas/farmacología , Transcriptoma , Cromatografía Líquida de Alta Presión/métodos , Biología Computacional/métodos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Panax notoginseng/metabolismo , Sapogeninas/química , Sapogeninas/farmacología , Saponinas/biosíntesis
14.
Zhongguo Zhong Yao Za Zhi ; 43(3): 556-562, 2018 Feb.
Artículo en Zh | MEDLINE | ID: mdl-29600622

RESUMEN

The differences and the variations of chondroitin sulfate content in different parts of Cervi Cornu Pantotrichum(CCP) with different processing methods were investigated. The chondroitin sulfate from velvet was extracted by dilute alkali-concentrated salt method. Next, the chondroitin sulfate was digested by chondroitinase ABC.The contents of total chondroitin sulfate and chondroitin sulfate A, B and C in the samples were determined by high performance liquid chromatography(HPLC).The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with freeze-drying processing is 14.13,11.99,1.74,0.32 g·kg⁻¹ï¼Œ respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with boiling processing is 10.71,8.97,2.21,1.40 g·kg⁻¹ï¼Œ respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP without blood is 12.47,9.47,2.64,0.07 g·kg⁻¹ï¼Œ respectively. And the content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with blood is 8.22,4.39,0.87,0.28 g·kg⁻¹ respectively. The results indicated that the chondroitin sulfate content in different processing methods was significantly different.The content of chondroitin sulfate in CCP with freeze-drying is higher than that in CCP with boiling processing.The content of chondroitin sulfate in CCP without blood is higher than that in CCP with blood. The chondroitin sulfate content in differerent paris of the velvet with the same processing methods was arranged from high to low as: wax slices, powder, gauze slices, bone slices.


Asunto(s)
Sulfatos de Condroitina/análisis , Ciervos , Cuernos/química , Animales
15.
Zhongguo Zhong Yao Za Zhi ; 42(23): 4636-4640, 2017 Dec.
Artículo en Zh | MEDLINE | ID: mdl-29376264

RESUMEN

Seven compounds(deacetylasperulasidic acid methyl ester, gardenoside, chlorogenic acid, geniposide, crocin-Ⅰ, crocin-Ⅱ, chikusetsu saponin Ⅳa)were determined simultaneously by multiple wavelength HPLC with diode array detector(DAD) in different parts of Gardenia jasminoides. The results showed that these components in different parts of G. jasminoides had a different distribution, and there was a large difference in content of each component. Geniposide was mainly distributed in fruits and leaves; chikusetsu saponin Ⅳa was mainly distributed in roots and stems; crocus glycosides existed mainly in fruits; chlorogenic acid had a higher distribution in leaves and stems; gardenoside had a higher distribution in leaves and roots, while ceacetylasperulasidic acid methyl ester had a higher distribution in roots and stems. Based on the analysis of the chemical composition and content difference in different parts of G. jasminoides, the basis for the comprehensive utilization and quality evaluation of resources of G. jasminoides was provided.


Asunto(s)
Frutas/química , Gardenia/química , Fitoquímicos/análisis , Hojas de la Planta/química , Ácido Clorogénico/análisis , Cromatografía Líquida de Alta Presión , Iridoides/análisis
16.
Zhongguo Zhong Yao Za Zhi ; 42(13): 2532-2537, 2017 Jul.
Artículo en Zh | MEDLINE | ID: mdl-28840695

RESUMEN

This present study is to develop an HPLC method for simultaneous determination of eight hydroxyl naphthoquinones, shikonin, ß-hydroxy-isovalerylshikonin, acetylshikonin, ß-acetoxy-isovalerylshikonin, deoxyshikonin, isobutyrylshikonin, ß,ß'-dimethylacrylshikonin and isovalerylshikonin. The eight constituents were measured on a Waters Xbridge C18 column (4.6 mm×250 mm,5 µm) with isocratic elution of acetonitrile-0.05% formic acid solution (70∶30) at a flow rate of 1.0 mL•min⁻¹. The detection wavelength was 275 nm and the column temperature was 30 ℃. The results of content determination indicated that significant differences of the eight compounds exist in every part of Arnebia euchroma,in which the highest part was the root bark, followed with the root, then the stem residues. The content of the xylem of root and aerial part was lower than the above parts. The results provided scientific basis for the medicinal parts of A. euchroma.


Asunto(s)
Boraginaceae/química , Naftoquinonas/análisis , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos , Corteza de la Planta/química , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química , Tallos de la Planta/química
17.
Heliyon ; 10(12): e31722, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975169

RESUMEN

Lonicerae japonicae flos (LJF), Lonicerae japonicae caulis (LJC), Lonicerae folium (LF) and Lonicerae fructus (LFR) are derived from Lonicera japonica Thunb., which are formed due to different medicinal parts. The efficacy of the 4 medicinal materials has similarities and differences. However, little attention has been paid to illustrate the differences in efficacy from the perspective of phytochemistry. In this study, ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Exactive-Orbitrap-MS) was used to qualitatively analyze the ingredients in 4 herbs. A total of 86 compounds were plausibly or unambiguously identified, there were 54 common components among the 4 medicinal materials, and each kind of medicinal materials had its own unique components. On the basis of qualitative analysis, ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-QQQ-MS/MS) was used to quantitatively analyze 31 components contained in 4 medicinal materials, and principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and other multivariate statistical analysis were furtherly performed for comparing the component contents. The results showed that the samples from the same parts were clustered into one group, and the samples from different medicinal parts were significantly different. The analysis of variable importance projection (VIP) value of the OPLS-DA model showed that 10 components including chlorogenic acid, secologanic acid, isochlorogenic acid A, loganin, lonicerin, loganic acid, secoxyloganin, sweroside, luteolin and rhoifolin were the main difference components among the 4 medicinal materials. The study not only lays a solid foundation for the intrinsic quality control of 4 medicinal materials and the study of different effects of the 4 medicinal materials at the phytochemical level, but also provides a basis for more rational utilization of various parts of L. japonica and expansion of medicinal resources.

18.
Biol Trace Elem Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630342

RESUMEN

In this study, the degree of accumulation of biogenic element and heavy metal contents of different parts and edible layers of leeks cultivated in Konya in Turkey was revealed. The amounts of P and K of leek were determined from 154.69 (leaf top of leek) and 985.05 mg/kg (root of leek) to 1377.63 (onion part of leek) and 2688.50 mg/kg (root of leek), respectively. P and K contents of leek layers changed from 139.45 (1st layer) and 446.63 mg/kg (7th layer) to 1596.69 (2nd layer) and 2201.53 mg/kg (4th layer), respectively. While Ca amounts of leek parts vary between 577.09 (leaf of leek) and 666.87 mg/kg (root of leek), Mg contents of leek parts were determined between 130.70 (onion part of leek) and 264.58 mg/kg (root of leek). All of the macro elements were detected in the highest amount in the root of the leek, followed by the leaf and bulb parts in decreasing order. Fe and Zn contents of different parts of leeks varied from 0.506 (onion part of leek) and 22.71 mg/kg (root of leek) to 1.53 (leaf top of leek) and 5.85 mg/kg (root of leek), respectively. In general, the heavy metals found in the highest amount both in different parts of the leek and in the edible bulbous layers were As and Ba. The layers of the leeks are rich in potassium, phosphorus, iron, and zinc.

19.
J Pharm Biomed Anal ; 249: 116388, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39089200

RESUMEN

Physalis alkekengi L.var. franchetii (Mast.) Makino (PAF) is an important edible and medicinal plant resource in China. Historically, phytochemical studies have primarily examined the calyx and fruit due to their long-standing use in traditional Chinese medicine for their ability to clear heat and detoxify. Metabolites and bioactivities of other parts such as the leaves, stems and roots, are rarely studied. The study involved conducting metabolic profiling of five plant parts of PAF using UPLC-Q-Orbitrap-HRMS analysis, in conjunction with two bioactivity assays. A total of 95 compounds were identified, including physalins, flavonoids, sucrose esters, phenylpropanoids, nitrogenous compounds and fatty acids. Notably, 14 aliphatic sucrose esters, which are potentially novel compounds, were initially identified. Furthermore, one new aliphatic sucrose ester was purified and its structure was elucidated by 1D and 2D NMR analysis. The hierarchical clustering analysis and principal component analysis showed the close clustering of the root and stem, suggesting similarities in their chemical composition, whereas the leaf, calyx and fruit clustered more distantly. Orthogonal partial least-squares discriminant analysis results showed that 41 compounds potentially serve as marker compounds for distinguishing among plant parts. Variations in activity were observed among the plant parts during the comparative evaluation with biological assays. The calyx, leaf and fruit extracts showed stronger antibacterial and anti-inflammatory activities than the stem and root extracts, and 19 potential biomarkers were identified by S-plot analysis for the observed activities, including chlorogenic acid, luteolin, cynaroside, physalin A, physalin F, physalin J, apigetrin, quercetin-3ß-D-glucoside and five ASEs, which likely explain the observed potent bioactivity.


Asunto(s)
Metabolómica , Physalis , Extractos Vegetales , Physalis/química , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Frutas/química , Animales , Espectrometría de Masas/métodos , Raíces de Plantas/química , Tallos de la Planta/química , Metaboloma , Plantas Medicinales/química , Ratones , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química
20.
Front Plant Sci ; 14: 1243724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711307

RESUMEN

Introduction: Paeonia ostii T. Hong & J.X. Zhang (s.s.) (Chinese name, Fengdan) is a widely cultivated food-medicine plant in China, in which root bark, seed kernels, and flowers are utilized for their medicinal and edible values. However, other parts of the plant are not used efficiently, in part due to a poor understanding of their chemical composition and potential biological activity. Methods: Untargeted ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS) metabolomics was applied to characterize the metabolic profiles of 10 different parts of P. ostii. Results and discussion: A total of 160 metabolites were alternatively identified definitely or tentatively, which were significantly different in various plant parts by multivariate statistical analysis. Quantitative analysis showed that underutilized plant parts also contain many active ingredients. Compared with the medicinal part of root bark, the root core part still contains a higher content of paeoniflorin (17.60 ± 0.06 mg/g) and PGG (15.50 ± 2.00 mg/g). Petals, as an edible part, contain high levels of quercitrin, and stamens have higher methyl gallate and PGG. Unexpectedly, the ovary has the highest content of methyl gallate and rather high levels of PGG (38.14 ± 1.27 mg/g), and it also contains surprisingly high concentrations of floralalbiflorin I. Paeoniflorin (38.68 ± 0.76 mg/g) is the most abundant in leaves, and the content is even higher than in the root bark. Branches are also rich in a variety of catechin derivatives and active ingredients such as hydrolyzable tannins. Seed kernels also contain fairly high levels of paeoniflorin and albiflorin. Fruit shells still contain a variety of components, although not at high levels. Seed coats, as by-products removed from peony seeds before oil extraction, have high contents of stilbenes, such as trans-gnetin H and suffruticosol B, showing significant potential for exploitation. Except for the seed kernels, extracts obtained from other parts exhibited good antioxidant activity in DPPH, ABTS, and ferric ion reducing antioxidant power (FRAP) assays (0.09-1.52 mmol TE/g). Five compounds (gallic acid, PGG, trans-resveratrol, kaempferol, and quercitrin) were important ingredients that contributed to their antioxidant activities. Furthermore, P. ostii seed cakes were first reported to possess agonistic activity toward CB1/CB2 receptors. This study provides a scientific basis for the further development and utilization of P. ostii plant resources.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda