Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-37501342

RESUMEN

Combining dissolved organic matter (DOM) in raw water (RW) with DOM in treated wastewater (TWW) can react with chlorine and pose emerging disinfection by-products (DBPs). This study evaluated DOM based on the molecular weight (MW) size fractionation, trihalomethane, iodinated-trihalomethane, haloacetonitrile, and trichloronitromethane formation potential (THMFP, I-THMFP, HANFP, and TCNMFP) of the RW from the U-Tapao Canal, Songkhla, Thailand and the RW mixed with TWW (RW + TWW) samples. The RW and RW + TWW were treated by coagulation with poly aluminum chloride. The DOM of RW and RW + TWW and their treated water was distributed most in the MW below 1 kDa. The MWs of 3-10 kDa and 1-3 kDa were the active DOM involved in the specific THMFP for the RW + TWW. The MW of < 1 kDa in the RW + TWW resulted in a slightly high specific I-THMFP and HANFP. The MW of 1 - 3 kDa in the coagulated samples had a high specific I-THMFP. The MW of > 10 kDa in the coagulated RW + TWW was a precursor for a particular HANFP. Monitoring systems for measuring the level of TWW mixed with RW and an effective process to enhance the efficiency of traditional water treatment must be set up to produce a consumer-safe water supply.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Aguas Residuales , Peso Molecular , Tailandia , Purificación del Agua/métodos , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Pollut Res Int ; 30(8): 20959-20969, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264461

RESUMEN

Biological activated carbon (BAC) will produce soluble microbial products (SMPs), which affect effluent quality. To clarify the mechanism by which BAC affects effluent water quality, the processes of a drinking water plant in Jiangsu Province were investigated. It was found that during the O3-BAC process, although ozonation could remove dissolved organic matter (DOC) to a certain extent, the DOC increased from 4.44 to 4.47 mg/L after BAC. Dissolved organic matter (DOM) in effluent from different processes was divided into five fractions based on hydrophilicity and hydrophobicity by resin fractionation. Through fluorescence excitation-emission matrix (EEM) spectroscopy combined with DOC analysis, it was found that SMPs are mainly included in transitional hydrophilic neutral (TPIN) fraction, which was the main cause of the DOC increase. Therefore, a new combined process was designed to remove TPIN effectively by coagulation after biological treatment, and found that coagulation had a good removal rate (13.2%) on TPIN. The trihalomethane formation potential (THMFP) of TPIN could be reduced effectively by 44.9% after coagulation. Compared with the old process, the new combined process had a higher removal rate (14.2-30.0%) of DOC, as well as a greater reduction of THMFP (29.0-78.6%) and haloacetic acid formation potential (HAAFP) (46.4-75.3%). This study aims to reveal the mechanism by which SMPs affect effluent water quality and exacerbate health risks, and to propose a solution to provide theoretical support for the design and optimization of drinking water treatment processes.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Materia Orgánica Disuelta , Carbón Orgánico/química , Purificación del Agua/métodos , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
3.
J Hazard Mater ; 418: 126298, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119980

RESUMEN

This work investigated the removal efficiency of disinfection by-product (DBP) precursors by different drinking water treatment processes and evaluated the feasibility of using fluorescence components removal as an indicator. A four-component (including tryptophan-like, protein-bound, tyrosine-like, and humic-like components) parallel factor analysis model was developed basing on 288 fluorescence excitation-emission matrices. Among all treatment processes, coagulation-sedimentation process showed the best performance, with mean removal ratios of 30% in total fluorescence intensity and 31% in total formation potential (FP) of DBPs, respectively. It preferentially removed humic-like component C4 (43%). Advanced treatment processes were less effective in comparison. Ozone and biological activated carbon (BAC) combined process reduced 20% of total fluorescence intensity, while ultrafiltration process reduced < 3%. Ozonation and BAC filtration preferentially removed free amino acids (i.e., C1 and C3) and protein-bound (i.e., C2) components, with mean removal ratios of 12% and 17%, respectively. Significant correlations (p < 0.01, double-tailed) were observed between four fluorescence components removal and FPs reduction of three trihalomethanes, dichloroacetonitrile (DCAN), and 1,1-dichloropropanone (1,1-DCP). Specifically, the correlation coefficients for three trihalomethanes and 1,1-DCP followed the order of C4 > C1 > C2 > C3, while the order for DCAN was C2 > C4 > C1 > C3.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Agua Potable/análisis , Análisis Factorial , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 245: 125669, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31881385

RESUMEN

Coagulation and flocculation can remove particulate algal cells effectively; however, they are not very effective for removing dissolved algal organic matter (AOM) in drinking water plants. In this work, optimum coagulation conditions using alum for both extracellular and intracellular organic matter of six different algal and cyanobacterial species were determined. Different coagulation conditions such as alum dosage, pH, and initial dissolved organic carbon (DOC) were tested. Hydrophobicity, hydrophilicty, and transphilicity of the cellular materials were determined using resin fractionation method. The removal of DOC by coagulation correlated well with the hydrophobicity of the AOM. The disinfection by-product formation potential (DBPFP) of various fractions of AOM was determined after coagulation. Although, higher removal occurred for hydrophobic AOM during coagulation, specific DBPFP, which varied from 10 to 147 µg/mg-C was higher for hydrophobic AOM. Of all the six species, highest DBPFP occurred for Phaeodactylum tricornutum, an abundant marine diatom species, but is increasingly found in surface water.


Asunto(s)
Compuestos de Alumbre , Cianobacterias/química , Desinfección , Floculación , Estramenopilos/química , Contaminantes Químicos del Agua/análisis , Diatomeas/química , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Contaminantes Químicos del Agua/química , Purificación del Agua
5.
Chemosphere ; 202: 626-636, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29597180

RESUMEN

The application of ozone-biological activated carbon (O3-BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O3-BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV254, DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature.


Asunto(s)
Carbón Orgánico/análisis , Desinfectantes/análisis , Agua Potable/análisis , Agua Potable/microbiología , Microbiología del Agua , Contaminantes del Agua/análisis , Purificación del Agua/métodos , China , Desinfección/métodos , Filtración/métodos , Ozono/análisis , Ozono/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda