RESUMEN
Studies often report estimates of the average treatment effect (ATE). While the ATE summarizes the effect of a treatment on average, it does not provide any information about the effect of treatment within any individual. A treatment strategy that uses an individual's information to tailor treatment to maximize benefit is known as an optimal dynamic treatment rule (ODTR). Treatment, however, is typically not limited to a single point in time; consequently, learning an optimal rule for a time-varying treatment may involve not just learning the extent to which the comparative treatments' benefits vary across the characteristics of individuals, but also learning the extent to which the comparative treatments' benefits vary as relevant circumstances evolve within an individual. The goal of this paper is to provide a tutorial for estimating ODTR from longitudinal observational and clinical trial data for applied researchers. We describe an approach that uses a doubly-robust unbiased transformation of the conditional average treatment effect. We then learn a time-varying ODTR for when to increase buprenorphine-naloxone (BUP-NX) dose to minimize return-to-regular-opioid-use among patients with opioid use disorder. Our analysis highlights the utility of ODTRs in the context of sequential decision making: the learned ODTR outperforms a clinically defined strategy.
RESUMEN
This paper estimates the causal effect of 20mph zones on road casualties in London. Potential confounders in the key relationship of interest are included within outcome regression and propensity score models, and the models are then combined to form a doubly robust estimator. A total of 234 treated zones and 2844 potential control zones are included in the data sample. The propensity score model is used to select a viable control group which has common support in the covariate distributions. We compare the doubly robust estimates with those obtained using three other methods: inverse probability weighting, regression adjustment, and propensity score matching. The results indicate that 20mph zones have had a significant causal impact on road casualty reduction in both absolute and proportional terms.