Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(29): 14448-14455, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266897

RESUMEN

Mechanical homeostasis describes how cells sense physical cues from the microenvironment and concomitantly remodel both the cytoskeleton and the surrounding extracellular matrix (ECM). Such feedback is thought to be essential to healthy development and maintenance of tissue. However, the nature of the dynamic coupling between microscale cell and ECM mechanics remains poorly understood. Here we investigate how and whether cells remodel their cortex and basement membrane to adapt to their microenvironment. We measured both intracellular and extracellular viscoelasticity, generating a full factorial dataset on 5 cell lines in 2 ECMs subjected to 4 cytoskeletal drug treatments at 2 time points. Nonmalignant breast epithelial cells show a similar viscoelasticity to that measured for the local ECM when cultured in 3D laminin-rich ECM. In contrast, the malignant counterpart is stiffer than the local environment. We confirmed that other mammary cancer cells embedded in tissue-mimetic hydrogels are nearly 4-fold stiffer than the surrounding ECM. Perturbation of actomyosin did not yield uniform responses but instead depended on the cell type and chemistry of the hydrogel. The observed viscoelasticity of both ECM and cells were well described by power laws in a frequency range that governs single filament cytoskeletal dynamics. Remarkably, the intracellular and extracellular power law parameters for the entire dataset collectively fall onto 2 parallel master curves described by just 2 parameters. Our work shows that tumor cells are mechanically plastic to adapt to many environments and reveals dynamical scaling behavior in the microscale mechanical responses of both cells and ECM.


Asunto(s)
Movimiento Celular/fisiología , Citoesqueleto/fisiología , Matriz Extracelular/fisiología , Mecanotransducción Celular/fisiología , Actomiosina/metabolismo , Amidas/farmacología , Técnicas de Cultivo de Célula/métodos , Movimiento Celular/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Hidrogeles , Laminina/metabolismo , Células MCF-7 , Toxinas Marinas , Mecanotransducción Celular/efectos de los fármacos , Oxazoles/farmacología , Piridinas/farmacología , Reología/métodos , Viscosidad
2.
Small ; 15(41): e1901560, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31423735

RESUMEN

Tissue-engineered hydrogels have received extensive attention as their mechanical properties, chemical compositions, and biological signals can be dynamically modified for mimicking extracellular matrices (ECM). Herein, the synthesis of novel double network (DN) hydrogels with tunable mechanical properties using combinatorial screening methods is reported. Furthermore, nanoengineered (NE) hydrogels are constructed by addition of ultrathin 2D black phosphorus (BP) nanosheets to the DN hydrogels with multiple functions for mimicking the ECM microenvironment to induce tissue regeneration. Notably, it is found that the BP nanosheets exhibit intrinsic properties for induced CaP crystal particle formation and therefore improve the mineralization ability of NE hydrogels. Finally, in vitro and in vivo data demonstrate that the BP nanosheets, mineralized CaP crystal nanoparticles, and excellent mechanical properties provide a favorable ECM microenvironment to mediate greater osteogenic cell differentiation and bone regeneration. Consequently, the combination of bioactive chemical materials and excellent mechanical stimuli of NE hydrogels inspire novel engineering strategies for bone-tissue regeneration.


Asunto(s)
Hidrogeles/farmacología , Nanopartículas/química , Osteogénesis/efectos de los fármacos , Fósforo/farmacología , Regulación hacia Arriba , Animales , Regeneración Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Humanos , Ratones , Nanopartículas/ultraestructura , Cráneo/citología , Cráneo/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431420

RESUMEN

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Asunto(s)
Quitosano , Cristales Líquidos , Animales , Quitosano/química , Hidrogeles/farmacología , Hidrogeles/metabolismo , Quitina/farmacología , Quitina/metabolismo , Vibrisas , Andamios del Tejido/química , Regeneración Ósea , Ingeniería de Tejidos , Osteogénesis , Matriz Extracelular/metabolismo , Antibacterianos/farmacología
4.
Front Cell Dev Biol ; 9: 651583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987178

RESUMEN

Decellularized tendon hydrogel from human or porcine tendon has been manufactured and found to be capable of augmenting tendon repair in vivo. However, no studies have clarified the effect of decellularized tendon hydrogel upon stem cell behavior. In the present study, we developed a new decellularized tendon hydrogel (T-gel) from Macaca mulatta, and investigated the effect of T-gel on the proliferation, migration and tenogenic differentiation of Macaca mulatta tendon-derived stem cells (mTDSCs). The mTDSCs were first identified to have universal stem cell characteristics, including clonogenicity, expression of mesenchymal stem cell and embryonic stem cell markers, and multilineage differentiation potential. Decellularization of Macaca mulatta Achilles tendons was confirmed to be effective by histological staining and DNA quantification. The resultant T-gel exhibited highly porous structure or similar nanofibrous structure and approximately swelling ratio compared to the collagen gel (C-gel). Interestingly, stromal cell-derived factor-1 (SDF-1) and fibromodulin (Fmod) inherent in the native tendon extracellular matrix (ECM) microenvironment were retained and the values of SDF-1 and Fmod in the T-gel were significantly higher than those found in the C-gel. Compared with the C-gel, the T-gel was found to be cytocompatible with NIH-3T3 fibroblasts and displayed good histocompatibility when implanted into rat subcutaneous tissue. More importantly, it was demonstrated that the T-gel supported the proliferation of mTDSCs and significantly promoted the migration and tenogenic differentiation of mTDSCs compared to the C-gel. These findings indicated that the T-gel, with its retained nanofibrous structure and some bioactive factors of native tendon ECM microenvironment, represents a promising hydrogel for tendon regeneration.

5.
Acta Biomater ; 114: 431-448, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32682055

RESUMEN

In view of the fact that titanium (Ti)-based implants still face the problem of loosening and failure of the implants caused by the slow biological response, the low osseointegration rate and the implant bacterial infection in clinical application, we designed a cancellous bone-like biomimetic Ti scaffold using the template accumulated by sugar spheres as a pore-forming agent. And based on a modified surface mineralization process and mussel-like adhesion mechanism, a silicon-doped calcium phosphate composite coating (Van-pBNPs/pep@pSiCaP) with Vancomycin (Van)-loaded polydopamine (pDA)-modified albumin nanoparticles (Van-pBNPs) and cell adhesion peptides (GFOGER) was constructed on the surface of Ti scaffold for mimicking the extracellular matrix (ECM) microenvironment of natural bone matrix to induce greater tissue regeneration. The in vitro study demonstrated that this porous Ti scaffold with functional bio-surface could distinctly facilitate cell early adhesion and spreading, and activate the expression of α2ß1 integrin receptor on the cell membrane through promoting the formation of focal adhesions (FAs) in bone marrow stromal cells (BMSCs), thus mediating greater osteogenic cell differentiation. And it could also effectively inhibit the adhesion and growth of Staphylococcus epidermidis, exhibiting good antibacterial properties. Moreover, the Van-pBNPs/pep@pSiCaP-Ti scaffolds showed enhanced in vivo bone-forming ability due to the contributions of bioactive chemical components and the natural cancellous bone-like macrostructure. This work offers a promising structural and functional bio-inspired strategy for designing metal implants with desirable ability of osteoinduction synergistically with antibacterial efficacy for promoting bone regeneration and infection prevention simultaneously. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making porous Ti scaffolds with a natural cancellous bone-like structure. Besides, a functional bio-surface was constructed on the bionic structure, mimicking some of the functions of the collagen-rich organic matrix and inorganic CaP nanocrystallites of native ECM of bone in chemical components and biological activities. This interconnected inter-pore opening structure encouraged the migration of cells among open macro-pores within the scaffold. In addition, the functionalized surface not only improved early cell adhesion, spreading, stimulated greater osteogenic differentiation of bone-forming cells, but also endowed the scaffold with excellent antibacterial effect. The biomimetic metal implant with multiple biomedical functions designed in this study has a great clinical application potential. This study represents a feasible method for the preparation of biomimetic structure of metal implants and the improvement of their surface biological activity.


Asunto(s)
Osteogénesis , Titanio , Biomimética , Regeneración Ósea , Hueso Esponjoso , Andamios del Tejido , Titanio/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda