Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Virol ; 98(6): e0025024, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38742875

RESUMEN

Equine herpesvirus type 1 (EHV-1) is a contagious respiratory pathogen that infects the mucosa of the upper respiratory tract (URT). Mucosal immune responses at the URT provide the first line of defense against EHV-1 and are crucial for orchestrating immunity. To define host-pathogen interactions, we characterized B-cell responses, antibody isotype functions, and EHV-1 replication of susceptible (non-immune) and clinically protected (immune) horses after experimental EHV-1 infection. Nasal secretion and nasal wash samples were collected and used for the isolation of DNA, RNA, and mucosal antibodies. Shedding of infectious virus, EHV-1 copy numbers, viral RNA expression, and host B-cell activation in the URT were compared based on host immune status. Mucosal EHV-1-specific antibody responses were associated with EHV-1 shedding and viral RNA transcription. Finally, mucosal immunoglobulin G (IgG) and IgA isotypes were purified and tested for neutralizing capabilities. IgG1 and IgG4/7 neutralized EHV-1, while IgG3/5, IgG6, and IgA did not. Immune horses secreted high amounts of mucosal EHV-1-specific IgG4/7 antibodies and quickly upregulated B-cell pathway genes, while EHV-1 was undetected by virus isolation and PCR. RNA transcription analysis reinforced incomplete viral replication in immune horses. In contrast, complete viral replication with high viral copy numbers and shedding of infectious viruses was characteristic for non-immune horses, together with low or absent EHV-1-specific neutralizing antibodies during viral replication. These data confirm that pre-existing mucosal IgG1 and IgG4/7 and rapid B-cell activation upon EHV-1 infection are essential for virus neutralization, regulation of viral replication, and mucosal immunity against EHV-1.IMPORTANCEEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion storms, and neurologic outbreaks known as equine herpes myeloencephalopathy (EHM). EHV-1 is transmitted with respiratory secretions by nose-to-nose contact or via fomites. The virus initially infects the epithelium of the upper respiratory tract (URT). Host-pathogen interactions and mucosal immunity at the viral entry site provide the first line of defense against the EHV-1. Robust mucosal immunity can be essential in protecting against EHV-1 and to reduce EHM outbreaks. It has previously been shown that immune horses do not establish cell-associated viremia, the prerequisite for EHM. Here, we demonstrate how mucosal antibodies can prevent the replication of EHV-1 at the epithelium of the URT and, thereby, the progression of the virus to the peripheral blood. The findings improve the mechanistic understanding of mucosal immunity against EHV-1 and can support the development of enhanced diagnostic tools, vaccines against EHM, and the management of EHV-1 outbreaks.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Inmunoglobulina G , Replicación Viral , Animales , Herpesvirus Équido 1/inmunología , Caballos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Inmunoglobulina G/inmunología , Inmunidad Mucosa , Esparcimiento de Virus/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , Interacciones Huésped-Patógeno/inmunología
2.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767608

RESUMEN

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Asunto(s)
Citocinas , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos , Herpesvirus Équido 1/inmunología , Femenino , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Citocinas/sangre , Citocinas/inmunología , Anticuerpos Antivirales/sangre , Esparcimiento de Virus , Viremia/inmunología , Viremia/veterinaria , Inmunoglobulina G/sangre
3.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
BMC Vet Res ; 20(1): 270, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909196

RESUMEN

Equid alphaherpesvirus 1 (EHV-1) is a ubiquitous and significant viral pathogen in horses worldwide, causing a range of conditions, including fever, respiratory disease, abortion in pregnant mares and the severe neurological disease called equine herpes myeloencephalopathy (EHM). Despite that EHV-1 is a notifiable animal disease in Sweden, there is limited knowledge about the circulating strains. This study aimed to analyze the genetic diversity of EHV-1 strains in equine samples from different Swedish outbreaks by partial genome sequencing. Genotyping based on three selected open reading frames ORF11, ORF30, and ORF34 in the viral genome was conducted for 55 outbreaks of EHV-1 spanning from the years 2012 to 2021. The analysis revealed 14 different genovariants, with one prominent genovariant identified in 49% of the outbreaks. Additionally, the study identified seven mutations not previously described. Three new mutations were demonstrated in ORF11, all synonymous, and four new mutations in ORF34, two synonymous, and two non-synonymous. Notably, different EHV-1 genovariants were found in five out of six studied EHM outbreaks, but clonal spreading was shown within the outbreaks. Moreover, the study demonstrated that healthy (recovered) horses that returned from an EHM outbreak at an international meeting in Valencia, Spain (2021), were positive for the virus clone responsible for the severe disease outbreak despite several weeks of quarantine. These findings shed light on the genetic diversity and transmission dynamics of the virus and significantly contribute to better understanding of the epidemiology of EHV-1 in Sweden and globally.


Asunto(s)
Brotes de Enfermedades , Variación Genética , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos , Suecia/epidemiología , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/aislamiento & purificación , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/epidemiología , Brotes de Enfermedades/veterinaria , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Genoma Viral , Genotipo , Sistemas de Lectura Abierta
5.
Vet Clin North Am Equine Pract ; 38(2): 339-362, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35811201

RESUMEN

Although equine herpesvirus myeloencephalopathy (EHM) is a relatively uncommon manifestation of equine herpesvirus-1 (EHV-1) infection, it can cause devastating losses during outbreaks. Antemortem diagnosis of EHM relies mainly on the molecular detection of EHV-1 in nasal secretions and blood. Management of horses affected by EHM is aimed at supportive nursing and nutritional care, at reducing central nervous system inflammation and preventing thromboembolic sequelae. Horses exhibiting sudden and severe neurologic signs consistent with a diagnosis of EHM pose a definite risk to the surrounding horse population. Consequently, early intervention to prevent the spread of infection is required.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Brotes de Enfermedades/veterinaria , Infecciones por Herpesviridae/veterinaria , Enfermedades de los Caballos/prevención & control , Caballos
6.
BMC Vet Res ; 17(1): 279, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412635

RESUMEN

BACKGROUND: C. psittaci has recently emerged as an equine abortigenic pathogen causing significant losses to the Australian Thoroughbred industry, while Equine herpesvirus-1 (EHV-1) is a well-recognized abortigenic agent. Diagnosis of these agents is based on molecular assays in diagnostic laboratories. In this study, we validated C. psittaci and newly developed EHV-1 Loop Mediated Isothermal Amplification (LAMP) assays performed in a real-time fluorometer (rtLAMP) against the reference diagnostic assays. We also evaluated isothermal amplification using commercially available colorimetric mix (cLAMP), and SYBR Green DNA binding dye (sgLAMP) for "naked eye" end-point detection when testing 'real-world' clinical samples. Finally, we applied the C. psittaci LAMP assays in two pilot Point-of-Care (POC) studies in an equine hospital. RESULTS: The analytical sensitivity of C. psittaci and EHV-1 rt-, and colorimetric LAMPs was determined as one and 10 genome equivalents per reaction, respectively. Compared to reference diagnostic qPCR assays, the C. psittaci rtLAMP showed sensitivity of 100%, specificity of 97.5, and 98.86% agreement, while EHV-1 rtLAMP showed 86.96% sensitivity, 100% specificity, and 91.43% agreement. When testing rapidly processed clinical samples, all three C. psittaci rt-, c-, sg-LAMP assays were highly congruent with each other, with Kappa values of 0. 906 for sgLAMP and 0. 821 for cLAMP when compared to rtLAMP. EHV-1 testing also revealed high congruence between the assays, with Kappa values of 0.784 for cLAMP and 0.638 for sgLAMP when compared to rtLAMP. The congruence between LAMP assays and the C. psittaci or EHV-1 qPCR assays was high, with agreements ranging from 94.12 to 100% for C. psittaci, and 88.24 to 94.12% for EHV-1, respectively. At the POC, the C. psittaci rt- and c-LAMP assays using rapidly processed swabs were performed by technicians with no prior molecular experience, and the overall congruence between the POC C. psittaci LAMPs and the qPCR assays ranged between 90.91-100%. CONCLUSIONS: This study describes reliable POC options for the detection of the equine pathogens: C. psittaci and EHV-1. Testing 'real-world' samples in equine clinical setting, represents a proof-of-concept that POC isothermal diagnostics can be applied to rapid disease screening in the equine industry.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Enfermedades de los Caballos/diagnóstico , Psitacosis/veterinaria , Animales , Chlamydophila psittaci/aislamiento & purificación , Femenino , Fluorometría/métodos , Fluorometría/veterinaria , Infecciones por Herpesviridae/diagnóstico , Herpesvirus Équido 1/aislamiento & purificación , Caballos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Sistemas de Atención de Punto , Psitacosis/diagnóstico , Sensibilidad y Especificidad
7.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511388

RESUMEN

Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-ß) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Équido 1/inmunología , Interferón Tipo I/metabolismo , Animales , Regulación de la Expresión Génica , Hepatitis B Crónica , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/virología , Caballos , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Janus Quinasa 1/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , TYK2 Quinasa/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
8.
BMC Vet Res ; 16(1): 374, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023592

RESUMEN

BACKGROUND: Equid herpesvirus 1 (EHV-1) infections are endemic worldwide, including Poland. Many are subclinical, but some are associated with respiratory disease, abortion, neonatal foal death, or neurological disease. We describe an outbreak of abortions in Arabian mares at a well-managed State stud farm in Poland. CASE PRESENTATION: Eight of 30 pregnant mares aborted and one gave birth to a weak foal that died within 72 h after birth. EHV-1 was isolated from all fetuses as well as from the diseased foal. All viruses belonged to the N752 variant based on the predicted open reading frame (ORF) 30 amino acid sequence. All were identical to each other and to previous EHV-1 viruses from the same stud based on the ORF68 sequence analysis. The outbreak coincided with the lapse in the routine yearly EHV-1/4 vaccinations of the mares. CONCLUSIONS: Multiple abortion due to EHV-1 infection can occur in well-managed groups of horses. Reactivation of latent EHV-1 in one of the resident mares followed by a horizontal spread was considered the most likely explanation for the outbreak. Routine vaccination is an important part of a herd-heath program.


Asunto(s)
Aborto Veterinario/epidemiología , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/aislamiento & purificación , Enfermedades de los Caballos/epidemiología , Aborto Veterinario/virología , Animales , Animales Recién Nacidos/virología , Brotes de Enfermedades/veterinaria , Femenino , Infecciones por Herpesviridae/patología , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/patología , Enfermedades de los Caballos/virología , Caballos , Sistemas de Lectura Abierta , Polonia/epidemiología , Embarazo , Vacunación/veterinaria
9.
N Z Vet J ; 68(1): 23-30, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31394974

RESUMEN

Aim: To estimate the frequency of infection with equine herpesvirus type-1 (EHV-1) among horses from the central North Island of New Zealand, including the frequency of detection of the D752 genotype.Methods: Samples of retropharyngeal lymph nodes (RLN) and submandibular lymph nodes (SLN) were dissected from the heads of 63 horses that were humanely killed for various unrelated reasons between March and November 2015. DNA extracted from these tissues was subjected to enrichment for EHV-1 sequences by hybridisation with biotin-labelled EHV-1 specific probe, followed by recovery of EHV-1 sequences on streptavidin-coated magnetic beads. Enriched samples were tested for the presence of EHV-1 using nested quantitative real-time PCR. The EHV-1 amplicons were sequenced to determine the genotype of the virus.Results: The median age of the horses was 6 (min 2, max 30) years, and 47/63 (75%) were Thoroughbreds. EHV-1 DNA was detected in RLN samples from 6/63 (10%) horses, and three of these horses were also positive for EHV-1 DNA in SLN. The remaining horses were negative for EHV-1 DNA in both RLN and SLN samples. The N752 genotype was detected in all positive samples and the D752 genotype was not detected in any of the samples.Conclusions: EHV-1 continues to circulate among horses in New Zealand. The frequency of latent EHV-1 infection among sampled horses may have been underestimated due to the sensitivity limit of the assay or because of the limited anatomical sites sampled in the study. Lack of detection of the D752 genotype suggests that infection with this genotype is not common in horses in New Zealand.Clinical Relevance: If live animals are tested for EHV-1 using SLN biopsy it should be kept in mind that negative results do not rule out the presence of latent EHV-1 infection at other sites inaccessible for testing. The RLN appear to be the preferred sample for detection of EHV-1 DNA in horses following recent euthanasia.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1 , Enfermedades de los Caballos/virología , Animales , Estudios Transversales , Genotipo , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/epidemiología , Caballos , Nueva Zelanda/epidemiología , Latencia del Virus
10.
J Gen Virol ; 100(11): 1567-1579, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31490114

RESUMEN

The ancestral equine herpesvirus 1 (EHV1), closely related to human herpes viruses, exploits leukocytes to reach its target organs, accordingly evading the immune surveillance system. Circulating EHV1 strains can be divided into abortigenic/neurovirulent, causing reproductive/neurological disorders. Neurovirulent EHV1 more efficiently recruits monocytic CD172a+ cells to the upper respiratory tract (URT), while abortigenic EHV1 tempers monocyte migration. Whether similar results could be expected for T lymphocytes is not known. Therefore, we questioned whether differences in T cell recruitment could be associated with variations in cell tropism between both EHV1 phenotypes, and which viral proteins might be involved. The expression of CXCL9 and CXCL10 was evaluated in abortigenic/neurovirulent EHV1-inoculated primary respiratory epithelial cells (ERECs). The bioactivity of chemokines was tested with a functional migration assay. Replication of neurovirulent EHV1 in the URT resulted in an enhanced expression/bioactivity of CXCL9 and CXCL10, compared to abortigenic EHV1. Interestingly, deletion of glycoprotein 2 resulted in an increased recruitment of both monocytic CD172a+ cells and T lymphocytes to the corresponding EREC supernatants. Our data reveal a novel function of EHV1-gp2, tempering leukocyte migration to the URT, further indicating a sophisticated virus-mediated orchestration of leukocyte recruitment to the URT.


Asunto(s)
Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Herpesvirus Équido 1/inmunología , Factores Inmunológicos/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Genotipo , Caballos , Monocitos/inmunología , Monocitos/virología , Linfocitos T/inmunología , Linfocitos T/virología , Regulación hacia Arriba , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral
11.
BMC Vet Res ; 15(1): 280, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387602

RESUMEN

BACKGROUND: Equine herpesvirus type 1 (EHV-1) infection is a major cause of pyrexias in winter among Japanese racehorses. In 2014-2015, the Japan Racing Association (JRA) changed the EHV-1 vaccine from an inactivated vaccine to a live vaccine (both produced by Nisseiken). To evaluate the effect of changing the vaccines, the capacities of these vaccines to induce virus-neutralizing (VN) antibodies were compared, and an epizootiological investigation of EHV-1 was performed at the JRA Ritto Training Center during epizootic periods from 2010-2011 to 2016-2017. RESULTS: Three-year-old horses that received the first dose of live vaccine showed higher geometric mean (GM) VN titers (205 and 220) than those that received inactivated vaccine (83, P < 0.05). The response rates after vaccination with the live vaccine (76 and 90%) were higher than that after vaccination with inactivated vaccine (42%, P < 0.05). Four-year-old horses from 2015 to 2017 that had received the live vaccine in the previous epizootic periods had higher GM titers (205 to 246) than those from 2011 to 2014, which had received the inactivated vaccine (139 to 164, P < 0.05). The estimated numbers of horses infected with EHV-1 or EHV-4, or both, in 2011-2012 (29 [95%CI: 21-37]) and 2013-2014 (37 [95%CI: 27-47]) were higher than those in the other periods (7 [95%CI: 2-12] to 16 [95%CI: 9-23]). Likewise, the seroconversion rates to EHV-1 in horses that stayed at the training center in 2011-2012 (66.0%) and 2013-2014 (52.0%) were higher than those in the other periods (12.0 to 28.6%). CONCLUSIONS: The live EHV-1 vaccine is highly immunogenic and provides greater VN antibody responses than the inactivated vaccine. Unlike the period when the policy was to use inactivated vaccine, there was no detectable epizootic EHV-1 infection at the training center during three consecutive periods after the introduction of the live vaccine. These results suggest that the replacement of inactivated vaccine with live vaccine, together with the achievement of high vaccination coverage, reinforced the herd effect, and contributed to better control of EHV-1 epizootics in the training center.


Asunto(s)
Anticuerpos Antivirales/sangre , Herpesvirus Équido 1 , Enfermedades de los Caballos/prevención & control , Vacunas Virales/inmunología , Animales , Herpesvirus Équido 4 , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Caballos , Japón/epidemiología , Estaciones del Año , Pruebas Serológicas , Vacunas de Productos Inactivados
12.
Vet Pathol ; 56(5): 691-702, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30686182

RESUMEN

Encephalitis in hamsters, which was induced by equine herpesvirus (EHV)-9, EHV-1 strain Ab4p, and zebra-borne EHV-1, was investigated and compared to assess viral kinetics and identify the progression and severity of neuropathological findings. Hamsters were inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 via the nasal route and euthanized at 24, 48, 72, 96, 120, 144, and 168 hours postinoculation (HPI). The inoculated hamsters had mild to severe neurological signs at 60 to 72, 96, and 120 HPI, and the mortality rate was 75%, 0%, and 0% for animals inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 viruses, respectively. Inoculated hamsters had varying degrees of rhinitis and lymphoplasmacytic meningoencephalitis, as well as differences in the severity and distribution of cerebral lesions. Furthermore, the cellular distribution of viral antigen depended on the inoculated virus. Neuronal necrosis was widely detected in animals inoculated with EHV-9, while marked perivascular cuffs of infiltrating inflammatory cells and gliosis were detected in animals inoculated with EHV-1 strain Ab4p and zebra-borne EHV-1. In the present study, 3 viruses belonging to the herpesvirus family induced encephalitis after initial propagation in the nasal cavity. These viruses might travel to the brain via the olfactory pathway and/or trigeminal nerve, showing different distributions and severities of neuropathological changes.


Asunto(s)
Antígenos Virales/aislamiento & purificación , Encefalopatías/virología , Encéfalo/virología , Infecciones por Herpesviridae/patología , Herpesviridae/clasificación , Animales , Encefalopatías/patología , Cricetinae , Infecciones por Herpesviridae/virología , Masculino , Proteínas Virales
13.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404844

RESUMEN

Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/química , Herpesvirus Équido 1/inmunología , Vacunas contra Herpesvirus/inmunología , Enfermedades de los Caballos/prevención & control , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/prevención & control , Herpesvirus Équido 1/genética , Vacunas contra Herpesvirus/administración & dosificación , Enfermedades de los Caballos/virología , Caballos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Inyecciones Intramusculares , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología
14.
Virol J ; 15(1): 186, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509297

RESUMEN

BACKGROUND: Equid alphaherpesvirus 1 (EHV-1) is one of the main infectious causative agents of abortion in mares and can also be associated with stillbirth, neonatal foal death, rhinopneumonitis in young horses and a neurological disorder called equine herpesvirus myeloencephalopathy (EHM). The neuropathogenicity of the virus was shown to be significantly higher in EHV-1 strains that carry a single nucleotide point (SNP) mutation in the ORF30, which encodes a catalytic subunit of viral DNA polymerase (ORF30 D752). Another gene, ORF68 is frequently used for phylogenetic analysis of EHV-1. METHODS: 27 EHV-1 strains isolated from aborted equine fetuses in Poland, collected between 1993 and 2017, were subjected to PCR targeting the open reading frames (ORFs) 30 and 68 of the EHV-1 genome. PCR products obtained were sequenced and SNPs were analyzed and compared to sequences available in GenBank. RESULTS: None of the analyzed sequences belonged to the ORF30 D752neuropathogenic genotype: all EHV-1 belonged to the non-neuropathogenic variant N752. On the basis of ORF68 sequences, the majority of EHV-1 sequences (76.9%) cannot be assigned to any of the known groups; only six sequences (23.1%) clustered within groups II and IV. CONCLUSIONS: EHV-1 strains obtained from abortion cases belong to the non-neuropathogenic genotype. Many EHV-1 ORF68 sequences have similar SNPs to those already described in Poland, but a clear geographical distribution was not observed. A single particular ORF68 sequence type was observed in strains isolated from 2001 onwards.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Encefalomielitis/veterinaria , Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/virología , Feto Abortado/virología , Animales , ADN Viral/genética , Brotes de Enfermedades/veterinaria , Encefalomielitis/virología , Femenino , Variación Genética/genética , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/clasificación , Herpesvirus Équido 1/aislamiento & purificación , Caballos , Sistemas de Lectura Abierta/genética , Polonia , Polimorfismo de Nucleótido Simple/genética
15.
BMC Vet Res ; 14(1): 245, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134896

RESUMEN

BACKGROUND: Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses' clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. RESULTS: Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10-12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5-10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. CONCLUSIONS: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical. Graphical abstract - Deletion of ORF2 reduces virulence of EHV-1 Ab4. Graphical summary of the main findings of this study: ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/patogenicidad , Enfermedades de los Caballos/virología , Proteínas Virales/genética , Factores de Virulencia/genética , Virulencia/genética , Animales , Citocinas/metabolismo , Femenino , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/inmunología , Caballos , Leucocitos Mononucleares/virología , Masculino , Mucosa Nasal/virología , Eliminación de Secuencia , Viremia/veterinaria , Esparcimiento de Virus/genética
16.
Vet Clin North Am Equine Pract ; 34(2): 277-297, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30007448

RESUMEN

EPM, CVSM, and EDM are currently recognized as the 3 most common neurologic diseases in US horses, with the latter 2 conditions being most prevalent in young animals. Moreover, horses competing at shows and performance events are at greater risk for exposure to highly contagious, neurologic EHV-1 outbreaks. A clinical diagnosis of any neurologic disease should be based on a careful history, complete neurologic examination, and appropriate diagnostic testing and interpretation. However, mild or early neurologic signs can often mimic or be mistaken for an orthopedic condition when horses present for performance-related concerns.


Asunto(s)
Enfermedades del Sistema Nervioso Central/veterinaria , Enfermedades de los Caballos/patología , Animales , Enfermedades del Sistema Nervioso Central/diagnóstico , Enfermedades del Sistema Nervioso Central/patología , Marcha , Caballos , Cojera Animal
17.
Microb Pathog ; 111: 388-394, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28888886

RESUMEN

Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper.


Asunto(s)
Virus del Moquillo Canino/inmunología , Moquillo/prevención & control , Hemaglutininas/inmunología , Herpesvirus Équido 1/genética , Proteínas Virales/administración & dosificación , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Moquillo/inmunología , Moquillo/virología , Virus del Moquillo Canino/genética , Perros , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Hemaglutininas/administración & dosificación , Hemaglutininas/genética , Herpesvirus Équido 1/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
18.
Vet Clin North Am Equine Pract ; 33(1): 99-125, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28325183

RESUMEN

Since vaccination may not prevent disease, antiherpetic drugs have been investigated for the therapy of several equine herpesviruses. Drug efficacy has been assessed in horses with disease, but most evidence is in vitro, in other species, or empirical. Oral valacyclovir is most often administered in the therapy of equine herpesvirus type-1 (EHV-1) to protect adult horses from equine herpesvirus myeloencephalopathy, while oral acyclovir is frequently administered for EHV-5 infection in the therapy of equine multinodular pulmonary fibrosis. Other antiherpetic drugs are promising but require further investigation. Several topical drugs are also empirically used in the therapy of equine viral keratitis.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Herpesviridae/veterinaria , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/virología , Animales , Encefalomielitis/tratamiento farmacológico , Encefalomielitis/veterinaria , Encefalomielitis/virología , Infecciones por Herpesviridae/tratamiento farmacológico , Herpesvirus Équido 1/aislamiento & purificación , Caballos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/veterinaria , Fibrosis Pulmonar/virología
19.
Pol J Vet Sci ; 20(4): 831-834, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29611646

RESUMEN

The NucleoCounter NC-3000, a portable high-speed cell counting device based on the principle of fluorescence microscopy, provides the alternative method for standard flow cytometry. The main objective of the study was to apply an efficient technique for the assessment of the primary murine neurons culture infected with either neuropathogenic or non-neuropathogenic strains of Equine Herpesvirus type 1 (EHV-1). Using the NucleoCounter NC-3000 we have observed a decrease in mitochondrial potential and reduction in cells viability but we have not observed changes in the cell cycle of cultured neurons infected with all EHV-1 strains.


Asunto(s)
Herpesvirus Équido 1/fisiología , Neuronas/virología , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular , Células Cultivadas , Potencial de la Membrana Mitocondrial , Ratones
20.
Acta Virol ; 60(4): 410-416, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27928922

RESUMEN

Equid herpesvirus type 1 (EHV-1) is a major pathogen of horses with a worldwide distribution, which can cause various clinical signs ranging from mild respiratory disease to neurological disorders. To initiate an effective infection, EHV-1 evolved a broad spectrum of mechanisms exploiting the host cell, including its actin filaments. An actin-myosin-driven transport has been described to precede cellular entry of different viruses. Therefore, in the present study we investigated the role of actin motor protein - myosin, during replication of two EHV-1 strains: Jan-E (wild-type EHV-1 strain isolated from aborted equine fetus) and Rac-H (attenuated strain highly adapted in cell cultures in vitro) in primary murine neurons. In order to investigate this, we used two inhibitors: blebbistatin (BLB; non-muscle myosin II inhibitor) and 2,3-butanedione monoxime (BDM; inhibitor of myosin ATPase). Our results demonstrated that limitation of Jan-E EHV-1 replication occurred in cells treated with myosin inhibitor, which confirmed the important role of actin motor proteins during the entry and egress of EHV-1 virions. Application of blebbistatin did not affect Rac-H EHV-1 replication, while BDM caused reduction of replication in murine neurons. Based on these results it can be assumed that EHV-1 virion movement was myosin-dependent.


Asunto(s)
Herpesvirus Équido 1/fisiología , Enfermedades de los Caballos/enzimología , Miosinas/metabolismo , Neuronas/enzimología , Internalización del Virus , Liberación del Virus , Animales , Células Cultivadas , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/virología , Caballos , Interacciones Huésped-Patógeno , Ratones , Miosinas/genética , Neuronas/virología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda