Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073886

RESUMEN

Genetic screens are powerful tools for biological research and are one of the reasons for the success of the thale cress Arabidopsis thaliana as a research model. Here, we describe the whole-genome sequencing of 871 Arabidopsis lines from the Homozygous EMS Mutant (HEM) collection as a novel resource for forward and reverse genetics. With an average 576 high-confidence mutations per HEM line, over three independent mutations altering protein sequences are found on average per gene in the collection. Pilot reverse genetics experiments on reproductive, developmental, immune and physiological traits confirmed the efficacy of the tool for identifying both null, knockdown and gain-of-function alleles. The possibility of conducting subtle repeated phenotyping and the immediate availability of the mutations will empower forward genetic approaches. The sequence resource is searchable with the ATHEM web interface (https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/), and the biological material is distributed by the Versailles Arabidopsis Stock Center.

2.
Mol Breed ; 44(6): 41, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779634

RESUMEN

In bread wheat (Triticum aestivum L.), fine-tuning the heading time is essential to maximize grain yield. Photoperiod-1 (Ppd-1) and VERNALIZATION 1 (Vrn-1) are major genes affecting photoperiod sensitivity and vernalization requirements, respectively. These genes have predominantly governed heading timing. However, Ppd-1 and Vrn-1 significantly impact heading dates, necessitating another gene that can slightly modify heading dates for fine-tuning. In this study, we developed an early heading mutant from the ethyl methanesulfonate-mutagenized population of the Japanese winter wheat cultivar "Kitahonami." MutMap analysis identified a nonsense mutation in the clock component gene Wheat PHYTOCLOCK 1/LUX ARRHYTHMO (WPCL-D1) as the probable SNP responsible for the early heading mutant on chromosome 3D. Segregation analysis using F2 and F3 populations confirmed that plants carrying the wpcl-D1 allele headed significantly earlier than those with the functional WPCL-D1. The early heading mutant exhibited increased expression levels of Ppd-1 and circadian clock genes, such as WPCL1 and LATE ELONGATED HYPOCOTYL (LHY). Notably, the transcript accumulation levels of Ppd-A1 and Ppd-D1 were influenced by the copy number of the functional WPCL1 gene. These results suggest that a loss-of-function mutation in WPCL-D1 is the causal mutation for the early heading phenotype. Adjusting the functional copy number of WPCL1 will be beneficial in fine-tuning of heading dates. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01478-5.

3.
Plant J ; 108(1): 40-54, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252236

RESUMEN

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Asunto(s)
Genoma de Planta/genética , Zea mays/genética , Productos Agrícolas , Endospermo/genética , Endospermo/metabolismo , Endogamia , Mutación , Fenotipo , Fitomejoramiento , Banco de Semillas , Semillas/genética , Semillas/metabolismo , Almidón/metabolismo , Zea mays/metabolismo
4.
Planta ; 253(2): 33, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459875

RESUMEN

MAIN CONCLUSION: A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance. Sorghum bicolor, a staple biomass and food crop, has been shown to selectively recruit Gram-positive bacteria (Actinobacteria) in its rhizosphere under drought conditions to enhance stress tolerance. However, the genetic/biochemical mechanism underlying the selective enrichment of specific microbial phyla in the sorghum rhizosphere is poorly known due to the lack of available mutants with altered root secretion systems. Using a subset of sorghum ethyl methanesulfonate (EMS) mutant lines, we have isolated a novel Red root (RR) mutant with an increased accumulation and secretion of phenolic compounds in roots. Genetic analysis showed that RR is a single dominant mutation. We further investigated the effect of root-specific phenolic compounds on rhizosphere microbiome composition under well-watered and water-deficit conditions. The microbiome diversity analysis of the RR rhizosphere showed that Actinobacteria were enriched significantly under the well-watered condition but showed no significant change under the water-deficit condition. BTx623 rhizosphere showed a significant increase in Actinobacteria under the water-deficit condition. Overall, the rhizosphere of RR genotype retained a higher bacterial diversity and richness relative to the rhizosphere of BTx623, especially under water-deficit condition. Therefore, the RR mutant provides an excellent genetic resource for rhizosphere-microbiome interaction studies as well as to develop drought-tolerant lines. Identification of the RR gene and the molecular mechanism through which the mutant selectively enriches microbial populations in the rhizosphere will be useful in designing strategies for improving sorghum productivity and stress tolerance.


Asunto(s)
Sistemas de Secreción Bacterianos , Rizosfera , Microbiología del Suelo , Sorghum , Bacterias/genética , Sistemas de Secreción Bacterianos/genética , Mutación , Raíces de Plantas/microbiología , Sorghum/genética , Sorghum/microbiología
5.
Int J Mol Sci ; 18(7)2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28640193

RESUMEN

The epidermis of swollen storage roots in purple cultivars of turnip "Tsuda" (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.


Asunto(s)
Antocianinas/genética , Vías Biosintéticas , Brassica rapa/genética , Mutación , Antocianinas/metabolismo , Brassica rapa/metabolismo , Brassica rapa/efectos de la radiación , Metanosulfonato de Etilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutagénesis , Mutágenos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Luz Solar , Rayos Ultravioleta
6.
J Exp Bot ; 67(11): 3237-49, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045099

RESUMEN

Foxtail millet (Setaria italica (L.) P. Beauv), which belongs to the Panicoideae tribe of the Poaceae, is an important grain crop widely grown in Northern China and India. It is currently developing into a novel model species for functional genomics of the Panicoideae as a result of its fully available reference genome sequence, small diploid genome (2n=18, ~510Mb), short life cycle, small stature and prolific seed production. Argonaute 1 (AGO1), belonging to the argonaute (AGO) protein family, recruits small RNAs and regulates plant growth and development. Here, we characterized an AGO1 mutant (siago1b) in foxtail millet, which was induced by ethyl methanesulfonate treatment. The mutant exhibited pleiotropic developmental defects, including dwarfing stem, narrow and rolled leaves, smaller panicles and lower rates of seed setting. Map-based cloning analysis demonstrated that these phenotypic variations were attributed to a C-A transversion, and a 7-bp deletion in the C-terminus of the SiAGO1b gene in siago1b Yeast two-hybrid assays and BiFC experiments revealed that the mutated region was an essential functional motif for the interaction between SiAGO1b and SiHYL1. Furthermore, 1598 differentially expressed genes were detected via RNA-seq-based comparison of SiAGO1b and wild-type plants, which revealed that SiAGO1b mutation influenced multiple biological processes, including energy metabolism, cell growth, programmed death and abiotic stress responses in foxtail millet. This study may provide a better understanding of the mechanisms by which SiAGO1b regulates the growth and development of crops.


Asunto(s)
Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Setaria (Planta)/fisiología , Secuencia de Aminoácidos , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Setaria (Planta)/genética , Setaria (Planta)/crecimiento & desarrollo
7.
J Integr Plant Biol ; 58(9): 766-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26936301

RESUMEN

We isolated a mutant showing perturbations in the development of male and female floral organs and fruits. Analysis of the single nucleotide polymorphisms from bulked F2 pools identified the causative variant occurring in Csa4G126690. Csa4G126690 shows high homology to Arabidopsis SEPALLATA2 (SEP2) thus being designated CsSEP2. The causative variant was located on the splicing site of CsSEP2, resulting in the skipping of exon 6 and abolishment of the transcriptional activity. Our data suggest that CsSEP2 is involved in the floral organ and fruits development by conferring transcriptional activity.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/genética , Exones/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genes de Plantas , Proteínas de Plantas/genética , Secuencia de Bases , Flores/genética , Frutas/genética , Mutación/genética , Fenotipo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple/genética
8.
Front Plant Sci ; 15: 1467006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39483672

RESUMEN

Leaf heading is an important agronomic trait of Chinese cabbage, which directly affects its yield. Leaf heading formation in Chinese cabbage is controlled by its internal genotype and external environmental factors, the underlying mechanism of which remains poorly understood. To discover the leaf heading formation mechanism more deeply, this study analyzed the correlation between proteomic and transcriptomic data in the leaf heading formation mutant fg-1 generated by EMS. iTRAQ-based quantitative proteomics techniques were performed to identify the protein expression profiles during the key periods of the early heading stage in the section of the soft leaf apical region (section a) and the whole leaf basal region (section d). We first identified 1,246 differentially expressed proteins (DEPs) in section a and 1,055 DEPs in section d. Notably, transcriptome-proteome integrated analysis revealed that 207 and 278 genes showed consistent trends at the genes' and proteins' expression levels in section a and section d, respectively. KEGG analyses showed that the phenylpropanoid biosynthesis pathway was enriched in both sections a and d. Furthermore, 86 TFs exhibited co-upregulation or co-downregulation, and seven out of 86 were involved in plant hormone synthesis and signal transduction pathways. This indicates that they are potentially related to the leaf heading formation in Chinese cabbage. Taken together, we have identified several key early-heading-formation-related factors via integration analysis of the transcriptomics and proteomics data. This provides sufficient gene resources to discover the molecular mechanism of leaf heading formation.

9.
Plants (Basel) ; 13(20)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39458791

RESUMEN

Salt stress can seriously affect the growth and development of maize (Zea mays L.), resulting in a great yield loss. Melatonin (MT), an indole hormone, is a potential enhancer of plant tolerance against salt stress. However, the complex mechanisms of MT application in enhancing maize salt tolerance are still unclear. Herein, three-leaf seedlings of salt-susceptible P138 and its salt-resistant ethyl methane sulfonate (EMS)-104 mutant were cultured with or without 150 µM MT application under 0 and 100 mM Na2CO3 treatments for seven days, to systematically explore the response mechanisms of exogenous MT in improving the salt tolerance of maize. The results showed that salt stress triggered an escalation in reactive oxygen species production, enhanced multiple antioxidant enzymes' activities, impaired cellular membrane permeability, inhibited photosynthetic pigment accumulation, and ultimately undermined the vigor and photosynthetic prowess of the seedlings. While suitable MT application counteracted the detrimental impacts of Na2CO3 on seedlings' growth and photosynthetic capacity, the seedling length and net photosynthetic rate of P138 and EMS-104 were increased by 5.5% and 18.7%, and 12.7% and 54.5%, respectively. Quantitative real-time PCR (qRT-PCR) analysis further showed that MT application activated the expression levels of antioxidant enzyme-related genes (Zm00001d025106, Zm00001d031908, Zm00001d027511, and Zm00001d040364) and pigment biosynthesis-related genes (Zm00001d011819 and Zm00001d017766) in both maize seedlings under Na2CO3 stress; they then formed a complex interaction network of gene expression, multiple physiological metabolisms, and phenotype changes to influence the salt tolerance of maize seedlings under MT or Na2CO3 stress. To sum up, these observations underscore that 150 µM MT can alleviate salt injury of maize seedlings, which may provide new insights for further investigating MT regulation mechanisms to enhance maize seedlings' salt resistance.

10.
Plant Sci ; 333: 111729, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178733

RESUMEN

The trithorax group (TrxG) factors play a critical role in the regulation of gene transcription by modulating histone methylation. However, the biological functions of the TrxG components are poorly characterized in different plant species. In this work, we identified three allelic ethyl methane-sulfonate-induced mutants P7, R67 and M3 in the woodland strawberry Fragaria vesca. These mutants show an increased number of floral organs, a lower pollination rate, raised achenes on the surface of the receptacle and increased leaf complexity. The causative gene is FvH4_6g44900, which contains severe mutations leading to premature stop codons or alternative splicing in each mutant. This gene encodes a protein with high similarity to ULTRAPETALA1, a component of the TrxG complex, and is therefore named as FveULT1. Yeast-two-hybrid and split-luciferase assays revealed that FveULT1 can physically interact with the TrxG factor FveATX1 and the PcG repressive complex 2 (PRC2) accessory protein FveEMF1. Transcriptome analysis revealed that several MADS-box genes, FveLFY and FveUFO were significantly up-regulated in fveult1 flower buds. The leaf development genes FveKNOXs, FveLFYa and SIMPLE LEAF1 were strongly induced in fveult1 leaves, and their promoter regions showed increased H3K4me3 levels and decreased H3K27me3 levels in fveult1 compared to WT. Taken together, our results demonstrate that FveULT1 is important for flower, fruit and leaf development and highlight the potential regulatory functions of histone methylation in strawberry.


Asunto(s)
Arabidopsis , Fragaria , Histonas/genética , Histonas/metabolismo , Arabidopsis/genética , Flores , Hojas de la Planta/fisiología , Proteínas del Grupo Polycomb/genética , Regulación de la Expresión Génica de las Plantas
11.
Front Plant Sci ; 9: 1650, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30487807

RESUMEN

C4 plants exhibit significantly higher photosynthetic, water and nutrient use efficiency compared with C3 plants. Kranz anatomy is associated with many C4 plants in which bundle sheath cells surround the veins and are themselves surrounded by mesophyll cells. This specialized Kranz anatomy is elucidated as an important contributor to C4 photosynthetic activities in C4 plant. Characterizing the molecular basis of Kranz structure formation has become a key objective for studies of C4 photosynthesis. However, severe mutants that specifically disrupt Kranz anatomy have not been identified. In this study, we detected 549 stable ethyl methane sulfonate-induced foxtail millet (cultivar Yugu1) mutants related to leaf development and photosynthesis among 2,709 mutants screened (M3/M4 generation). The identified mutants included 52 that had abnormal leaf veins (with abnormal starch accumulation based on iodine staining). Each of the 52 mutants was characterized through an analysis of leaf morphology, and through microscopic observations of leaf tissue sections embedded in resin and paraffin. In total, 14 mutants were identified with abnormal Kranz structures exemplified by small bundle sheath cell size. Additional phenotypes of the mutants included poorly differentiated mesophyll and bundle sheath cells, increased vein density and the absence of chloroplasts in the bundle sheath cells. Kranz structure mutations were accompanied by varying leaf thickness, implying these mutations induced complex effects. We identified mutations related to Kranz structure development in this trial, which may be useful for the mapping and cloning of genes responsible for mediating Kranz structure development.

12.
Front Plant Sci ; 9: 1059, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073013

RESUMEN

The heading date is critical in determining the adaptability of plants to specific natural environments. Molecular characterization of the wheat genes that regulate heading not only enhances our understanding of the mechanisms underlying wheat heading regulation but also benefits wheat breeding programs by improving heading phenotypes. In this study, we characterized a late heading date mutant, m605, obtained by ethyl methanesulfonate (EMS) mutation. Compared with its wild-type parent, YZ4110, m605 was at least 7 days late in heading when sown in autumn. This late heading trait was controlled by a single recessive gene named TaHdm605. Genetic mapping located the TaHdm605 locus between the molecular markers cfd152 and barc42 on chromosome 3DL using publicly available markers and then further mapped this locus to a 1.86 Mb physical genomic region containing 26 predicted genes. This fine genetic and physical mapping will be helpful for the future map-based cloning of TaHdm605 and for breeders seeking to engineer changes in the wheat heading date trait.

13.
Front Plant Sci ; 8: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154575

RESUMEN

The eggplant was mutagenized with ethyl methane sulfonate (EMS) to enhance its genetic variability in our previous paper. In this article, we further analyzed the phenotype of M2 generation of mutant eggplants. A total of 325 independent M2 families were investigated for phenotypic variation. In addition to the visible phenotypic variation, chlorogenic acid (CGA) concentrations were analyzed in 26 fruits of mutants with High Performance Liquid Chromatography assay. Seventeen fruits exhibited significantly higher concentrations of CGAs than those in wild-type. The anthocyanin concentration of S9-1, the purple black mutant, was higher than WT, meanwhile, the anthocyanin concentration of L6-4 and U36-1 was lower than WT. Furthermore, our RT-PCR result demonstrated that the expression levels of anthocyanin biosynthetic genes, except for SmPAL, were increased in S9-1, and the regulator SmMYB1 was decreased in L6-4 and U36-1 mutants. Together, our data indicated that, M2 generation showed abundant phenotypic variations and the strong potential usage for next step of breeding and molecular genetic mechanisms in eggplant.

14.
Gene ; 575(2 Pt 1): 285-93, 2016 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-26342963

RESUMEN

Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/biosíntesis , Estrés Fisiológico , Transcriptoma , Triticum/metabolismo , China , Metanosulfonato de Etilo/toxicidad , Mutagénesis/efectos de los fármacos , Proteínas de Plantas/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda