Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
EMBO Rep ; 17(12): 1857-1871, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27821511

RESUMEN

The endoplasmic reticulum-mitochondria encounter structure (ERMES) is a protein complex that plays a tethering role in physically connecting ER and mitochondria membranes. The ERMES complex is composed of Mdm12, Mmm1, and Mdm34, which have a SMP domain in common, and Mdm10. Here, we report the crystal structure of S. cerevisiae Mdm12. The Mdm12 forms a dimeric SMP structure through domain swapping of the ß1-strand comprising residues 1-7. Biochemical experiments reveal a phospholipid-binding site located along a hydrophobic channel of the Mdm12 structure and that Mdm12 might have a binding preference for glycerophospholipids harboring a positively charged head group. Strikingly, both full-length Mdm12 and Mdm12 truncated to exclude the disordered region (residues 74-114) display the same organization in the asymmetric unit, although they crystallize as a tetramer and hexamer, respectively. Taken together, these studies provide a novel understanding of the overall organization of SMP domains in the ERMES complex, indicating that Mdm12 interacts with Mdm34 through head-to-head contact, and with Mmm1 through tail-to-tail contact of SMP domains.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Cristalografía por Rayos X , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO Rep ; 17(7): 965-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27226123

RESUMEN

Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.


Asunto(s)
Proteínas Fúngicas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Transducción de Señal , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Dosificación de Gen , Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Complejos Multiproteicos , Transporte de Proteínas , Proteolisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-27477677

RESUMEN

Mitochondria are unique organelles that contain their own - although strongly reduced - genome, and are surrounded by two membranes. While most cellular phospholipid biosynthesis takes place in the ER, mitochondria harbor the whole spectrum of glycerophospholipids common to biological membranes. Mitochondria also contribute to overall phospholipid biosynthesis in cells by producing phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Considering these features, it is not surprising that mitochondria maintain highly active exchange of phospholipids with other cellular compartments. In this contribution we describe the transport of phospholipids between mitochondria and other organelles, and discuss recent developments in our understanding of the molecular functions of the protein complexes that mediate these processes. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Asunto(s)
Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Animales , Transporte Biológico/fisiología , Cardiolipinas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Fosfatidiletanolaminas/metabolismo
4.
J Cell Sci ; 126(Pt 16): 3563-74, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23781023

RESUMEN

The yeast mitochondrial outer membrane (MOM) protein Mdm10 is involved in at least three different processes: (1) association of mitochondria with the endoplasmic reticulum and mitochondrial lipid homeostasis (2) membrane assembly of MOM proteins, and (3) inheritance and morphogenesis of mitochondria. To decipher the precise role of Mdm10 in mitochondrial function, we screened for high-copy suppressors of the severe growth defect of the mdm10Δ mutant. We identified two novel mitochondrial proteins (open reading frames YOR228c and YLR253w) that we named Mdm10 complementing protein (Mcp) 1 and Mcp2. Overexpression of Mcp1 or Mcp2 restores the alterations in morphology and stability of respiratory chain complexes of mitochondria devoid of Mdm10, but the observed defect in assembly of MOM proteins is not rescued. Lipid analysis demonstrates that elevated levels of Mcp1 and Mcp2 restore the alterations in mitochondrial phospholipid and ergosterol homeostasis in cells lacking Mdm10. Collectively, this work identifies two novel proteins that play a role in mitochondrial lipid homeostasis and describes a role of Mdm10 in ergosterol trafficking.


Asunto(s)
Metabolismo de los Lípidos , Macrófagos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostasis , Saccharomyces cerevisiae/metabolismo
5.
Mol Biol Evol ; 30(9): 2044-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813918

RESUMEN

Mitochondria are the result of a billion years of integrative evolution, converting a once free-living bacterium to an organelle deeply linked to diverse cellular processes. One way in which mitochondria are integrated with nonendosymbiotically derived organelles is via endoplasmic reticulum (ER)-mitochondria contact sites. The ER membrane is physically tethered to the mitochondrial outer membrane by the ER-mitochondria encounter structure (ERMES). However, to date, ERMES has only ever been found in the fungal lineage. Here, we bioinformatically demonstrate that ERMES is present in lineages outside Fungi and validate this inference by mass spectrometric identification of ERMES components in Acanthamoeba castellanii mitochondria. We further demonstrate that ERMES is retained in hydrogenosome-bearing but not mitosome-bearing organisms, yielding insight into the process of reductive mitochondrial evolution. Finally, we find that the taxonomic distribution of ERMES is most consistent with rooting the eukaryotic tree between Amorphea (Animals + Fungi + Amoebozoa) + Excavata and all other eukaryotes (Diaphoratickes).


Asunto(s)
Acanthamoeba castellanii/ultraestructura , Evolución Biológica , Membranas Intracelulares/clasificación , Filogenia , Saccharomyces cerevisiae/ultraestructura , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/metabolismo , Animales , Biología Computacional , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell Rep ; 43(3): 113805, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38377000

RESUMEN

The majority of mitochondrial precursor proteins are imported through the Tom40 ß-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for ß-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda