Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968109

RESUMEN

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Trofoblastos , Trofoblastos/metabolismo , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Femenino , Embarazo , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Placenta/metabolismo , Transducción de Señal , Autofagia/fisiología
2.
Oncology ; 102(10): 858-867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408442

RESUMEN

INTRODUCTION: Breast cancer is the most common cancer and the leading cause of cancer death in women. Recent research indicates that human endogenous retroviruses (HERVs) may be linked to carcinogenesis, but the data remain controversial. METHODS: HERVs' expression was evaluated to show the differences between breast cancer and control samples, and their associations with clinicopathological parameters. Gene expression of 12 HERVs, i.e., ERVE-4, ERVW-1, ERVFRD-1, ERVV-1, ERV3-1, ERVH48-1, ERVMER34-1, ERVK-7, ERVK13-1, ERVK11-1, ERVK3-1, and HCP5, was analyzed by qPCR and/or TCGA datasets for breast cancer. RESULTS: ERV3-1, ERVFRD-1, ERVH48-1, and ERVW-1 provided data to support their tumor suppressor roles in breast cancer. ERV3-1 evinced the best performing diagnostic data based on qPCR, i.e. , AUC: 0.819 (p < 0.0001), sensitivity of 72.41%, and specificity of 89.66%. Lower levels of ERV3-1 were noted in advanced stage and higher grades, and significant negative association was found in relation to Ki-67 levels. Oncogenic roles may be inferred for ERVK13-1, ERVV-1, and ERVMER34-1. Data for ERVK-7, ERVE-4, ERVK11-1, and HCP5 remain inconclusive. CONCLUSION: Differential HERV expression may be applicable to evaluate novel biomarkers for breast cancer. However, more research is needed to reveal their real clinical impact, the biological roles, and regulatory mechanisms in breast carcinogenesis.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Femenino , Neoplasias de la Mama/virología , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Carcinogénesis/genética , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Anciano
3.
FASEB J ; 33(11): 12873-12887, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31499012

RESUMEN

Syncytin (Syn)-2 is an important fusogenic protein that contributes to the formation of the placental syncytiotrophoblast. Galectin (Gal)-1, a soluble lectin, is also involved in trophoblast cell fusion and modulates the interaction of certain retroviral envelopes with their cellular receptor. This study aimed to investigate the association between Syn-2 and Gal-1 during human trophoblast cell fusion. This association was evaluated in vitro on primary villous cytotrophoblasts (vCTBs) and cell lines using recombinant Gal-1 and Syn-2-pseudotyped viruses. Using lactose, a Gal antagonist, and Gal-1-specific small interfering RNA (siRNA) transfections, we confirmed the implication of Gal-1 in vCTBs and BeWo cell fusion, although RT-PCR and ELISA analyses suggested that Gal-1 alone did not induce syncytialization. Infection assays showed a specific and significant effect of Gal-1 on the infectivity of Syn-2-pseudotyped viruses that depended on the expression of major facilitator superfamily domain-containing 2A (MFSD2a). Moreover, Gal-3, another placental Gal, did not modulate the infectivity of Syn-2-positive viruses, strengthening the specific association between Gal-1 and Syn-2. Interestingly, Gal-1 significantly reduced the infectivity of Syn-1-pseudotyped viruses, suggesting the opposite effects of Gal-1 on Syn-1 and -2. Finally, coimmunoprecipitation experiments showed a glycan-dependent interaction between Syn-2-bearing virions and Gal-1. We conclude that Gal-1 specifically interacts with Syn-2 and possibly regulates Syn-2/MFSD2a interaction during syncytialization of trophoblastic cells.-Toudic, C., Vargas, A., Xiao, Y., St-Pierre, G., Bannert, N., Lafond, J., Rassart, É., Sato, S., Barbeau, B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans.


Asunto(s)
Fusión Celular , Galectina 1/metabolismo , Proteínas Gestacionales/metabolismo , Trofoblastos/citología , Retrovirus Endógenos , Femenino , Células HEK293 , Células HeLa , Humanos , Embarazo , Unión Proteica
4.
Placenta ; 126: 150-159, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35816776

RESUMEN

INTRODUCTION: Throughout human pregnancy there is a delicate balance between the maintenance of a proliferative, trophoblast stem cell pool (TSC) and the differentiation from TSC to placental cell sub-lineages like the syncytiotrophoblast (STB). The STB is comprised of multinucleated cells that come into direct contact with maternal blood and provides the first line of defense to protect the fetus from maternal infections. The differentiation of TSC towards STB is primarily driven by human endogenous retroviruses (HERV), specifically Syncytin-1 (ERVW-1) and Syncytin-2 (ERVFRD-1). Beyond cell fusion, there is also evidence to suggest they can regulate cell proliferation and an antiviral response in other cell types. Therefore, we hypothesized that HERV can regulate cell proliferation as well as an antiviral response in TSCs. METHOD: shRNA was used to knockdown ERVW-1 in TSCs and revealed reduction in cell proliferation, differentiation, and cell fusion. RT-qPCR and flow cytometry was used to measure other HERV and the presence of Type I and Type II interferon receptors. RESULTS: ERVW-1 knockdown (KD) TSCs had a significantly longer cell doubling time and reduced expression of the proliferation marker Ki67. ERVW-1 KD cells also demonstrated a marked deficiency in the ability to differentiate. Interestingly, ERVFRD-1 was upregulated in both ERVW-1 KD TSC and STB cells compared to controls. Finally, we found that the Type I interferon receptors, IFNAR1 and IFNAR2 were significantly increased in ERVW-1 KD STB cells. DISCUSSION: These findings uncover critical HERV functions in the trophoblasts and a novel role for ERVW-1 during early human placental development.


Asunto(s)
Retrovirus Endógenos , Trofoblastos , Antivirales , Proliferación Celular , Retrovirus Endógenos/genética , Femenino , Productos del Gen env , Humanos , Placenta/metabolismo , Embarazo , Proteínas Gestacionales , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Trofoblastos/metabolismo
5.
Front Microbiol ; 9: 287, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515560

RESUMEN

Human endogenous retroviruses (ERVs) have been found to be associated with different diseases, e.g., multiple sclerosis (MS). Most human ERVs integrated in our genome are not competent to replicate and these sequences are presumably silent. However, transcription of human ERVs can be reactivated, e.g., by hypoxia. Interestingly, MS has been linked to hypoxia since decades. As some patterns of demyelination are similar to white matter ischemia, hypoxic damage is discussed. Therefore, we are interested in the association between hypoxia and ERVs. As a model, we used human SH-SY5Y neuroblastoma cells after treatment with the hypoxia-mimetic cobalt chloride and analyzed differences in the gene expression profiles in comparison to untreated cells. The vicinity of up-regulated genes was scanned for endogenous retrovirus-derived sequences. Five genes were found to be strongly up-regulated in SH-SY5Y cells after treatment with cobalt chloride: clusterin, glutathione peroxidase 3, insulin-like growth factor 2, solute carrier family 7 member 11, and neural precursor cell expressed developmentally down-regulated protein 9. In the vicinity of these genes we identified large (>1,000 bp) open reading frames (ORFs). Most of these ORFs showed only low similarities to proteins from retro-transcribing viruses. However, we found very high similarity between retrovirus envelope sequences and a sequence in the vicinity of neural precursor cell expressed developmentally down-regulated protein 9. This sequence encodes the human endogenous retrovirus group FRD member 1, the encoded protein product is called syncytin 2. Transfection of syncytin 2 into the well-characterized Ewing sarcoma cell line A673 was not able to modulate the low immunostimulatory activity of this cell line. Future research is needed to determine whether the identified genes and the human endogenous retrovirus group FRD member 1 might play a role in the etiology of MS.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda