Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 73(2): 250-263.e5, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30527662

RESUMEN

Metazoan chromosomes are sequentially partitioned into topologically associating domains (TADs) and then into smaller sub-domains. One class of sub-domains, insulated neighborhoods, are proposed to spatially sequester and insulate the enclosed genes through self-association and chromatin looping. However, it has not been determined functionally whether promoter-enhancer interactions and gene regulation are broadly restricted to within these loops. Here, we employed published datasets from murine embryonic stem cells (mESCs) to identify insulated neighborhoods that confine promoter-enhancer interactions and demarcate gene regulatory regions. To directly address the functionality of these regions, we depleted estrogen-related receptor ß (Esrrb), which binds the Mediator co-activator complex, to impair enhancers of genes within 222 insulated neighborhoods without causing mESC differentiation. Esrrb depletion reduces Mediator binding, promoter-enhancer looping, and expression of both nascent RNA and mRNA within the insulated neighborhoods without significantly affecting the flanking genes. Our data indicate that insulated neighborhoods represent functional regulons in mammalian genomes.


Asunto(s)
Cromosomas de los Mamíferos , Elementos de Facilitación Genéticos , Elementos Aisladores , Células Madre Embrionarias de Ratones/fisiología , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Bases de Datos Genéticas , Regulación hacia Abajo , Ratones , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Cohesinas
2.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397088

RESUMEN

The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Diferenciación Celular , Autorrenovación de las Células , Redes Reguladoras de Genes , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Receptores de Estrógenos/genética , Factores de Transcripción SOXB1/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473939

RESUMEN

Embryonic stem cells (ESCs) favor glycolysis over oxidative phosphorylation for energy production, and glycolytic metabolism is critical for pluripotency establishment, maintenance, and exit. However, an understanding of how glycolysis regulates the self-renewal and differentiation of ESCs remains elusive. Here, we demonstrated that protein lactylation, regulated by intracellular lactate, contributes to the self-renewal of ESCs. We further showed that Esrrb, an orphan nuclear receptor involved in pluripotency maintenance and extraembryonic endoderm stem cell (XEN) differentiation, is lactylated on K228 and K232. The lactylation of Esrrb enhances its activity in promoting ESC self-renewal in the absence of the LIF and XEN differentiation of ESCs by increasing its binding at target genes. Our studies reveal the importance of protein lactylation in the self-renewal and XEN differentiation of ESCs, and the underlying mechanism of glycolytic metabolism regulating cell fate choice.


Asunto(s)
Células Madre Embrionarias , Endodermo , Endodermo/metabolismo , Diferenciación Celular/genética
4.
Biochem Genet ; 61(6): 2672-2690, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37222961

RESUMEN

Gastric cancer (GC) is a common malignant tumor, posing a great threat to human's health and life. Previous studies have suggested aberrant expression of long non-coding RNAs (lncRNAs) in GC. This study elucidated the effects of lncRNA ACTA2-AS1 on the biological characteristics of GC. Gene expression in stomach adenocarcinoma (STAD) samples compared with normal tissues and the correlation between gene expression and prognosis of STAD patients were analyzed using bioinformatic tools. Gene expression at protein and mRNA levels in GC and normal cells was tested by western blotting and RT-qPCR. The subcellular localization of ACTA2-AS1 in AGS and HGC27 cells was identified by nuclear-cytoplasmic fractionation and FISH assay. EdU, CCK-8, flow cytometry analysis, TUNEL staining assays were conducted to evaluate the role of ACTA2-AS1 and ESRRB on GC cellular behaviors. The binding relationship among ACTA2-AS1, miR-6720-5p and ESRRB was verified by RNA pulldown, luciferase reporter assay and RIP assay. LncRNA ACTA2-AS1 was underexpressed in GC tissues and cell lines. ACTA2-AS1 elevation suppressed GC cell proliferation and induced apoptosis. Mechanistically, ACTA2-AS1 directly bound to miR-6720-5p and subsequently promoted the expression of target gene ESRRB in GC cells. Furthermore, ESRRB knockdown reversed the influence of ACTA2-AS1 overexpression on GC proliferation and apoptosis. ACTA2-AS1 plays an antioncogenic role in GC via binding with miR-6720-5p to regulate ESRRB expression.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Receptores de Estrógenos/genética , Actinas/genética
5.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810223

RESUMEN

DNA can adopt various structures besides the B-form. Among them, cruciform structures are formed on inverted repeat (IR) sequences. While cruciform formable IRs (CFIRs) are sometimes found in regulatory regions of transcription, their function in transcription remains elusive, especially in eukaryotes. We found a cluster of CFIRs within the mouse Pou5f1 enhancer. Here, we demonstrate that this cluster or some member(s) plays an active role in the transcriptional regulation of not only Pou5f1, but also Sox2, Nanog, Klf4 and Esrrb. To clarify in vivo function of the cluster, we performed genome editing using mouse ES cells, in which each of the CFIRs was altered to the corresponding mirror repeat sequence. The alterations reduced the level of the Pou5f1 transcript in the genome-edited cell lines, and elevated those of Sox2, Nanog, Klf4 and Esrrb. Furthermore, transcription of non-coding RNAs (ncRNAs) within the enhancer was also upregulated in the genome-edited cell lines, in a similar manner to Sox2, Nanog, Klf4 and Esrrb. These ncRNAs are hypothesized to control the expression of these four pluripotency genes. The CFIRs present in the Pou5f1 enhancer seem to be important to maintain the integrity of ES cells.


Asunto(s)
Elementos de Facilitación Genéticos , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Línea Celular , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Conformación de Ácido Nucleico , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Activación Transcripcional , Regulación hacia Arriba
6.
Mol Biol Rep ; 47(12): 9979-9985, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33269433

RESUMEN

Autosomal recessive nonsyndromic hearing loss (DFNB) is relatively frequent in Pakistan, which is thought to be mainly due to relatively frequent consanguinity. DFNB genes vary widely in their kinds and functions making molecular diagnosis difficult. This study determined the genetic causes in five Pakistani DFNB families with prelingual onset. The familial genetic analysis identified four pathogenic or likely pathogenic homozygous mutations by whole exome sequencing: two splicing donor site mutations of c.787+1G>A in ESRRB (DFNB35) and c.637+1G>T in CABP2 (DFNB93) and two missense mutations of c.7814A>G (p.Asn2605Ser) in CDH23 (DFNB12) and c.242G>A (p.Arg81His) in TMIE (DFNB6). The ESRRB and TMIE mutations were novel, and the TMIE mutation was observed in two families. The two missense mutations were located at well conserved sites and in silico analysis predicted their pathogenicity. This study identified four homozygous mutations as the underlying cause of DFNB including two novel mutations. This study will be helpful for the exact molecular diagnosis and treatment of deafness patients.


Asunto(s)
Cadherinas/genética , Proteínas de Unión al Calcio/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Receptores de Estrógenos/genética , Adolescente , Adulto , Proteínas Relacionadas con las Cadherinas , Niño , Preescolar , Consanguinidad , Sordera/epidemiología , Femenino , Pérdida Auditiva Sensorineural/epidemiología , Homocigoto , Humanos , Masculino , Mutación Missense , Pakistán/epidemiología
7.
J Cell Physiol ; 233(2): 1601-1611, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28636277

RESUMEN

The estrogen-related receptor b (ESRRB) is an orphan nuclear receptor and targets many genes involved in self-renewal and pluripotency. In mouse ES cells, overexpression of ESRRB can maintain LIF-independent self-renewal in the absence of Nanog. However, the fundamental features of porcine ESRRB remain elusive. In this study, we revealed the expression profiles of ESRRB in both porcine pluripotent stem cells and early stage embryos and dissected the functional domains of ESRRB protein to prove that ESRRB is a key transcription factor that enhanced porcine pluripotent gene activation. Addition of ESRRB into the cocktail of core pluripotent factors Oct4, Sox2, Klf4, and c-Myc (OSKM + E) could significantly enhance the reprograming efficiency and the formation of alkaline phosphatase positive colonies. Conversely, knockdown of ESRRB in piPSCs significantly reduced the expression level of pluripotent genes, minimized the alkaline phosphatase activity, and initiated the porcine induced pluripotent stem cell differentiation. Therefore, porcine ESRRB is a crucial transcription factor to improve the self-renewal of piPSCs.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Receptores de Estrógenos/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Autorrenovación de las Células , Células Cultivadas , Técnicas de Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Receptores de Estrógenos/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Sus scrofa , Transfección
8.
Stem Cells ; 34(2): 322-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26523946

RESUMEN

Identification of a gene set capable of driving rapid and proper reprogramming to induced pluripotent stem cells (iPSCs) is an important issue. Here we show that the efficiency and kinetics of iPSC reprogramming are dramatically improved by the combined expression of Jarid2 and genes encoding its associated proteins. We demonstrate that forced expression of JARID2 promotes iPSC reprogramming by suppressing the expression of Arf, a known reprogramming barrier, and that the N-terminal half of JARID2 is sufficient for such promotion. Moreover, JARID2 accelerated silencing of the retroviral Klf4 transgene and demethylation of the Nanog promoter, underpinning the potentiating activity of JARID2 in iPSC reprogramming. We further show that JARID2 physically interacts with ESRRB, SALL4A, and PRDM14, and that these JARID2-associated proteins synergistically and robustly facilitate iPSC reprogramming in a JARID2-dependent manner. Our findings provide an insight into the important roles of JARID2 during reprogramming and suggest that the JARID2-associated protein network contributes to overcoming reprogramming barriers.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Proteínas de Unión al ADN , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Complejo Represivo Polycomb 2 , Receptores de Estrógenos , Factores de Transcripción , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Factor 4 Similar a Kruppel , Ratones , Complejo Represivo Polycomb 2/biosíntesis , Complejo Represivo Polycomb 2/genética , Proteínas de Unión al ARN , Receptores de Estrógenos/biosíntesis , Receptores de Estrógenos/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
9.
Genesis ; 54(1): 53-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26663459

RESUMEN

Among transgenic mice with ubiquitous Cre recombinase activity, all strains to date excise loxP-flanked (floxed) alleles either at or before the zygote stage or at nondescript stages of development. This manuscript describes a new mouse strain, in which Cre recombinase, integrated into the Esrrb locus, efficiently excises floxed alleles in pre-implantation embryos at the onset of the four-cell stage. By enabling inactivation of genes only after the embryo has undergone two cleavages, this strain should facilitate in vivo studies of genes with essential gametic or zygotic functions. In addition, this study describes a new, highly pluripotent hybrid C57BL/6J x 129S1/SvImJ mouse embryonic stem cell line, HYB12, in which this knockin and additional targeted alleles have been generated.


Asunto(s)
Alelos , Receptores de Estrógenos/genética , Animales , Línea Celular , Eliminación de Gen , Técnicas de Transferencia de Gen , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Recombinación Genética , Proteínas Virales/genética , Cigoto/metabolismo
10.
Biochem Biophys Res Commun ; 478(4): 1720-5, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27601327

RESUMEN

Estrogen-related receptor beta (Esrrb) is expressed in embryonic stem (ES) cells and is involved in self-renewal ability and pluripotency. Previously, we found that Dax1 is associated with Esrrb and represses its transcriptional activity. Further, the disruption of the Dax1-Esrrb interaction increases the expression of the extra-embryonic endoderm marker Gata6 in ES cells. Here, we investigated the influences of Esrrb and Dax1 on Gata6 expression. Esrrb overexpression in ES cells induced endogenous Gata6 mRNA and Gata6 promoter activity. In addition, the Gata6 promoter was found to contain the Esrrb recognition motifs ERRE1 and ERRE2, and the latter was the responsive element of Esrrb. Associations between ERRE2 and Esrrb were then confirmed by biotin DNA pulldown and chromatin immunoprecipitation assays. Subsequently, we showed that Esrrb activity at the Gata6 promoter was repressed by Dax1, and although Dax1 did not bind to ERRE2, it was associated with Esrrb, which directly binds to ERRE2. In addition, the transcriptional activity of Esrrb was enhanced by nuclear receptor co-activator 3 (Ncoa3), which has recently been shown to be a binding partner of Esrrb. Finally, we showed that Dax1 was associated with Ncoa3 and repressed its transcriptional activity. Taken together, the present study indicates that the Gata6 promoter is activated by Esrrb in association with Ncoa3, and Dax1 inhibited activities of Esrrb and Ncoa3, resulting maintenance of the undifferentiated status of ES cells.


Asunto(s)
Receptor Nuclear Huérfano DAX-1/genética , Factor de Transcripción GATA6/genética , Regulación de la Expresión Génica , Coactivador 3 de Receptor Nuclear/genética , Regiones Promotoras Genéticas/genética , Receptores de Estrógenos/genética , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Receptor Nuclear Huérfano DAX-1/metabolismo , Células Madre Embrionarias/metabolismo , Factor de Transcripción GATA6/metabolismo , Células HEK293 , Humanos , Ratones , Mutación , Coactivador 3 de Receptor Nuclear/metabolismo , Motivos de Nucleótidos/genética , Unión Proteica , Receptores de Estrógenos/metabolismo , Elementos de Respuesta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Shoulder Elbow Surg ; 25(6): 865-72, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27066960

RESUMEN

BACKGROUND: A familial and genetic predisposition for the development of rotator cuff tearing has been identified. The purpose of this study was to determine if a familial predisposition exists for healing after rotator cuff repair and if the reported significant association with a single-nucleotide polymorphism (SNP) in the ESRRB gene is present in patients who fail to heal. MATERIALS AND METHODS: The study recruited 72 patients undergoing arthroscopic rotator cuff repair for a full-thickness posterosuperior tear. Magnetic resonance imaging studies were performed at a minimum of 1 year postoperatively (average, 2.6 years). Healing failures were classified as lateral or medial. Self-reported family history of rotator cuff tearing data and genome-wide genotypes were available. Characteristics of cases with and without a family history of rotator cuff tearing were compared, and a comparison of the frequency of SNP 1758384 (in ESRRB) was performed between patients who healed and those who failed to heal. RESULTS: Of the rotator cuff repairs, 42% failed to heal; 42% of patients reported a family history of rotator cuff tear. Multivariate regression analysis showed a significant association between familiality and overall healing failure (medial and lateral failures) (P = .036) and lateral failures independently (P = .006). An increased risk for the presence of a rare allele for SNP rs17583842 was present in lateral failures compared with those that healed (P = .005). CONCLUSIONS: Individuals with a family history of rotator cuff tearing were more likely to have repair failures. Significant association of a SNP variant in the ESRRB gene was also observed with lateral failure.


Asunto(s)
Receptores de Estrógenos/genética , Lesiones del Manguito de los Rotadores/genética , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/cirugía , Cicatrización de Heridas/genética , Adulto , Anciano , Alelos , Artroscopía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Insuficiencia del Tratamiento , Resultado del Tratamiento , Receptor Relacionado con Estrógeno ERRalfa
12.
J Shoulder Elbow Surg ; 24(2): e31-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25219474

RESUMEN

BACKGROUND: The precise etiology of rotator cuff disease is unknown, but prior evidence suggests a role for genetic factors. Variants of estrogen-related receptor-ß (ESRRB) have been previously associated with rotator cuff disease. The purpose of the present study was to confirm the association between multiple candidate genes, including ESRRB, and rotator cuff disease in an independent set of patients with rotator cuff tear. MATERIALS AND METHODS: The Illumina 5M (Illumina Inc, San Diego, CA, USA) single nucleotide polymorphism (SNP) platform was used to genotype 175 patients with rotator cuff tear. Genotypes were used to select a set of 2595 genetically matched Caucasian controls available from the Illumina iControls database. Tests of association were performed with Genome-wide Efficient Mixed Model Association (GEMMA) software at 69 SNPs that fell within 20 kb of 6 candidate genes (DEFB1, DENND2C, ESRRB, FGF3, FGF10, and FGFR1). RESULTS: Tests of association revealed 1 significantly associated SNP occurring in ESRRB (rs17583842; P = 4.4E-4). Another SNP within ESRRB (rs7157192) had a nominal P value of 7.8E-3. FastPHASE software estimated 2 frequent haplotypes among 54 individuals who carried both risk alleles at these 2 SNPs. The first haplotype had a frequency of 13.9% (n = 15) in risk-allele carriers and only 2.2% in controls (odds ratio, 6.9; 95% confidence interval, 3.9-2.2). The second haplotype had a frequency of 12.9% in risk-allele carriers and only 2.7% in controls (odds ratio, 5.3; 95% confidence interval, 3.0-9.5). CONCLUSIONS: The significant association and the presence of high-risk haplotypes identified in the ESRRB gene confirm the association of variants in ESRRB and rotator cuff disease.


Asunto(s)
Receptores de Estrógenos/genética , Lesiones del Manguito de los Rotadores , Adulto , Anciano , Alelos , Estudios de Casos y Controles , Haplotipos , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Rotura/genética
13.
BMC Med Genomics ; 15(1): 18, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101039

RESUMEN

BACKGROUND: Hereditary hearing loss (HHL) is a common heterogeneous disorder affecting all ages, ethnicities, and genders. The most common form of HHL is autosomal recessive non-syndromic hearing loss (ARNSHL), in which there is no genotype-phenotype correlation in the majority of cases. This study aimed to identify the genetic causes of hearing loss (HL) in a family with Iranian Azeri Turkish ethnicity negative for gap junction beta-2 (GJB2), gap junction beta-6 (GJB6), and mitochondrially encoded 12S rRNA (MT-RNR1) deleterious mutations. METHODS: Targeted genome sequencing method was applied to detect genetic causes of HL in the family. Sanger sequencing was employed to verify the segregation of the variant. Finally, we used bioinformatics tools and American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines to determine whether the detected variant might affect the corresponding protein or not. RESULTS: A novel homozygous missense mutation, c.499G>A (p.G167R), was identified in exon 5 of the ESRRB (estrogen-related receptor beta) gene. Healthy and affected family members confirmed the co-segregation of the variant with ARNSHL. Eventually, the variant's pathogenicity was confirmed by the in silico analysis and the ACMG/AMP guidelines. CONCLUSION: The study suggests that the detected variant, c.499G>A, plays a crucial role in the development of ARNSHL, emphasizing the clinical significance of the ESRRB gene in ARNSHL patients. Additionally, it would be helpful for genetic counseling and clinical management of ARNSHL patients and providing preventive opportunities.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Conexinas/genética , Sordera/genética , Femenino , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Irán , Masculino , Mutación , Mutación Missense , Linaje , Receptores de Estrógenos
14.
Stem Cell Reports ; 17(1): 35-42, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34971561

RESUMEN

Primordial germ cells (PGCs) arise from cells of the post-implantation epiblast in response to cytokine signaling. PGC development can be recapitulated in vitro by differentiating epiblast-like cells (EpiLCs) into PGC-like cells (PGCLCs) through cytokine exposure. Interestingly, the cytokine requirement for PGCLC induction can be bypassed by enforced expression of the transcription factor (TF) NANOG. However, the underlying mechanisms are not fully elucidated. Here, we show that NANOG mediates Otx2 downregulation in the absence of cytokines and that this is essential for PGCLC induction by NANOG. Moreover, the direct NANOG target gene Esrrb, which can substitute for several NANOG functions, does not downregulate Otx2 when overexpressed in EpiLCs and cannot promote PGCLC specification. However, expression of ESRRB in Otx2+/- EpiLCs rescues emergence of PGCLCs. This study illuminates the interplay of TFs occurring at the earliest stages of PGC specification.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteína Homeótica Nanog/genética , Factores de Transcripción Otx/genética , Receptores de Estrógenos/genética , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Heterogeneidad Genética , Células Germinativas/citología , Inmunofenotipificación , Proteína Homeótica Nanog/metabolismo , Factores de Transcripción Otx/metabolismo , Unión Proteica , Receptores de Estrógenos/metabolismo
15.
Stem Cell Reports ; 17(6): 1334-1350, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35594859

RESUMEN

Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.


Asunto(s)
Células Madre Embrionarias , Endodermo , Ciclo Celular/genética , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Estratos Germinativos
17.
Front Cell Dev Biol ; 9: 712224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616727

RESUMEN

Porcine-induced pluripotent stem cells (piPSCs) could serve as a great model system for human stem cell preclinical research. However, the pluripotency gene network of piPSCs, especially the function for the core transcription factor estrogen-related receptor beta (ESRRB), was poorly understood. Here, we constructed ESRRB-overexpressing piPSCs (ESRRB-piPSCs). Compared with the control piPSCs (CON-piPSCs), the ESRRB-piPSCs showed flat, monolayered colony morphology. Moreover, the ESRRB-piPSCs showed greater chimeric capacity into trophectoderm than CON-piPSCs. We found that ESRRB could directly regulate the expressions of trophoblast stem cell (TSC)-specific markers, including KRT8, KRT18 and CDX2, through binding to their promoter regions. Mutational analysis proved that the N-terminus zinc finger domain is indispensable for ESRRB to regulate the TSC markers. Furthermore, this regulation needs the participation of OCT4. Accordingly, the cooperation between ESRRB and OCT4 facilitates the conversion from pluripotent state to the trophoblast-like state. Our results demonstrated a unique and crucial role of ESRRB in determining piPSCs fate, and shed new light on the molecular mechanism underlying the segregation of embryonic and extra-embryonic lineages.

18.
Cells ; 10(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34685690

RESUMEN

Precise gene regulation is critical during embryo development. Long terminal repeat elements (LTRs) of endogenous retroviruses (ERVs) are dynamically expressed in blastocysts of mammalian embryos. However, the expression pattern of LTRs in monkey blastocyst is still unknown. By single-cell RNA-sequencing (seq) data of cynomolgus monkeys, we found that LTRs of several ERV families, including MacERV6, MacERV3, MacERV2, MacERVK1, and MacERVK2, were highly expressed in pre-implantation embryo cells including epiblast (EPI), trophectoderm (TrB), and primitive endoderm (PrE), but were depleted in post-implantation. We knocked down MacERV6-LTR1a in cynomolgus monkeys with a short hairpin RNA (shRNA) strategy to examine the potential function of MacERV6-LTR1a in the early development of monkey embryos. The silence of MacERV6-LTR1a mainly postpones the differentiation of TrB, EPI, and PrE cells in embryos at day 7 compared to control. Moreover, we confirmed MacERV6-LTR1a could recruit Estrogen Related Receptor Beta (ESRRB), which plays an important role in the maintenance of self-renewal and pluripotency of embryonic and trophoblast stem cells through different signaling pathways including FGF and Wnt signaling pathways. In summary, these results suggest that MacERV6-LTR1a is involved in gene regulation of the pre-implantation embryo of the cynomolgus monkeys.


Asunto(s)
Blastocisto/metabolismo , Retrovirus Endógenos/genética , Secuencias Repetidas Terminales/genética , Animales , Desarrollo Embrionario/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Macaca fascicularis , Células Madre Pluripotentes/metabolismo , Factores de Tiempo , Transcriptoma/genética
19.
J Mol Cell Biol ; 11(6): 463-473, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30299501

RESUMEN

Trophoblast stem cells (TSCs), which can be derived from the trophoectoderm of a blastocyst, have the ability to sustain self-renewal and differentiate into various placental trophoblast cell types. Meanwhile, essential insights into the molecular mechanisms controlling the placental development can be gained by using TSCs as the cell model. Esrrb is a transcription factor that has been shown to play pivotal roles in both embryonic stem cell (ESC) and TSC, but the precise mechanism whereby Esrrb regulates TSC-specific transcriptome during differentiation and reprogramming is still largely unknown. In the present study, we elucidate the function of Esrrb in self-renewal and differentiation of TSCs, as well as during the induced TSC (iTSC) reprogramming. We demonstrate that the precise level of Esrrb is critical for stem state maintenance and further trophoblast differentiation of TSCs, as ectopically expressed Esrrb can partially block the rapid differentiation of TSCs in the absence of fibroblast growth factor 4. However, Esrrb depletion results in downregulation of certain key TSC-specific transcription factors, consequently causing a rapid differentiation of TSCs and these Esrrb-deficient TSCs lose the ability of hemorrhagic lesion formation in vivo. This function of Esrrb is exerted by directly binding and activating a core set of TSC-specific target genes including Cdx2, Eomes, Sox2, Fgfr4, and Bmp4. Furthermore, we show that Esrrb overexpression can facilitate the MEF-to-iTSC conversion. Moreover, Esrrb can substitute for Eomes to generate GEsTM-iTSCs. Thus, our findings provide a better understanding of the molecular mechanism of Esrrb in maintaining TSC self-renewal and during iTSC reprogramming.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Receptores de Estrógenos/metabolismo , Trofoblastos/metabolismo , Animales , Técnicas de Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Transgénicos , Receptores de Estrógenos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trofoblastos/citología
20.
Cell Stem Cell ; 24(6): 983-994.e7, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31031139

RESUMEN

Following fertilization, totipotent cells undergo asymmetric cell divisions, resulting in three distinct cell types in the late pre-implantation blastocyst: epiblast (Epi), primitive endoderm (PrE), and trophectoderm (TE). Here, we aim to understand whether these three cell types can be induced from fibroblasts by one combination of transcription factors. By utilizing a sophisticated fluorescent knockin reporter system, we identified a combination of five transcription factors, Gata3, Eomes, Tfap2c, Myc, and Esrrb, that can reprogram fibroblasts into induced pluripotent stem cells (iPSCs), induced trophoblast stem cells (iTSCs), and induced extraembryonic endoderm stem cells (iXENs), concomitantly. In-depth transcriptomic, chromatin, and epigenetic analyses provide insights into the molecular mechanisms that underlie the reprogramming process toward the three cell types. Mechanistically, we show that the interplay between Esrrb and Eomes during the reprogramming process determines cell fate, where high levels of Esrrb induce a XEN-like state that drives pluripotency and high levels of Eomes drive trophectodermal fate.


Asunto(s)
Blastocisto/fisiología , Endodermo/fisiología , Fibroblastos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Trofoblastos/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Reprogramación Celular , Implantación del Embrión , Ratones , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda