Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.776
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303429

RESUMEN

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Epítopos , Glicoproteínas/química , Subunidades de Proteína
2.
Cell ; 183(5): 1383-1401.e19, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33159858

RESUMEN

Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/genética , Análisis de la Célula Individual , Animales , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Efecto Espectador , Diferenciación Celular , Proliferación Celular , Citocinas/metabolismo , Ebolavirus/genética , Chaperón BiP del Retículo Endoplásmico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Regulación Viral de la Expresión Génica , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interferones/genética , Interferones/metabolismo , Macaca mulatta , Macrófagos/metabolismo , Monocitos/metabolismo , Mielopoyesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Transcriptoma/genética
3.
Cell ; 174(4): 938-952.e13, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096313

RESUMEN

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Ebolavirus/inmunología , Epítopos/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Glicoproteínas de Membrana/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Inmunización , Ratones , Ratones Endogámicos BALB C , Resultado del Tratamiento
4.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474922

RESUMEN

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Asunto(s)
Microscopía por Crioelectrón , Ebolavirus/fisiología , Ebolavirus/ultraestructura , Nucleocápside/ultraestructura , Nucleoproteínas/ultraestructura , Ensamble de Virus , Modelos Biológicos , Proteínas Mutantes/química , Mutación/genética , Nucleoproteínas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo
5.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550789

RESUMEN

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Factores de Transcripción , Proteínas Virales , Replicación Viral/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Humanos , Mapeo de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Cell ; 169(5): 878-890.e15, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525755

RESUMEN

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Vacunas contra el Virus del Ébola/inmunología , Fiebre Hemorrágica Ebola/inmunología , Sobrevivientes , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Reacciones Cruzadas , Ebolavirus/clasificación , Ebolavirus/inmunología , Femenino , Hurones , Fiebre Hemorrágica Ebola/virología , Humanos , Cinética , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Alineación de Secuencia , Células Vero
7.
Cell ; 167(4): 1079-1087.e5, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814505

RESUMEN

The 2013-2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the co-circulation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages.


Asunto(s)
Evolución Biológica , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Especificidad del Huésped , África Occidental/epidemiología , Animales , Quirópteros/virología , Brotes de Enfermedades , Ebolavirus/clasificación , Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Mutación , Filogenia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Zoonosis
8.
Cell ; 167(4): 1088-1098.e6, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814506

RESUMEN

The magnitude of the 2013-2016 Ebola virus disease (EVD) epidemic enabled an unprecedented number of viral mutations to occur over successive human-to-human transmission events, increasing the probability that adaptation to the human host occurred during the outbreak. We investigated one nonsynonymous mutation, Ebola virus (EBOV) glycoprotein (GP) mutant A82V, for its effect on viral infectivity. This mutation, located at the NPC1-binding site on EBOV GP, occurred early in the 2013-2016 outbreak and rose to high frequency. We found that GP-A82V had heightened ability to infect primate cells, including human dendritic cells. The increased infectivity was restricted to cells that have primate-specific NPC1 sequences at the EBOV interface, suggesting that this mutation was indeed an adaptation to the human host. GP-A82V was associated with increased mortality, consistent with the hypothesis that the heightened intrinsic infectivity of GP-A82V contributed to disease severity during the EVD epidemic.


Asunto(s)
Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , África Occidental/epidemiología , Sustitución de Aminoácidos , Animales , Callithrix , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cheirogaleidae , Citoplasma/virología , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Conformación Proteica en Hélice alfa , Proteínas del Envoltorio Viral/metabolismo , Virión/química , Virión/patogenicidad , Virulencia
9.
Immunity ; 54(4): 815-828.e5, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852832

RESUMEN

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Femenino , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Receptores Fc/inmunología
10.
EMBO J ; 42(11): e113578, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082863

RESUMEN

Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Fiebre Hemorrágica Ebola/metabolismo , Fusión de Membrana , Proteínas del Núcleo Viral/metabolismo , Endosomas/metabolismo , Proteínas de la Matriz Viral
11.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319964

RESUMEN

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vacunas Virales , Humanos , Animales , Ratones , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Sueros Inmunes
12.
Mol Cell ; 69(1): 136-145.e6, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290611

RESUMEN

Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.


Asunto(s)
Ebolavirus/metabolismo , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/genética , Transcripción Genética/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Células HeLa , Humanos , Nucleoproteínas , Fosforilación , Dominios y Motivos de Interacción de Proteínas/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , ARN Viral/metabolismo , Células Vero
13.
J Biol Chem ; 300(5): 107213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522519

RESUMEN

Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.


Asunto(s)
Membrana Celular , Ebolavirus , Ensamble de Virus , Liberación del Virus , Humanos , Sustitución de Aminoácidos , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Ebolavirus/genética , Células HEK293 , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Mutación , Nucleoproteínas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Unión Proteica , Electricidad Estática , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/química , Virión/metabolismo , Virión/genética
14.
EMBO J ; 40(18): e105658, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260076

RESUMEN

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Prolina/metabolismo , Tirosina/metabolismo , Proteínas Portadoras , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Replicación Viral
15.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757972

RESUMEN

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Asunto(s)
Ebolavirus , Polisacáridos , Replicación Viral , Ebolavirus/fisiología , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilación , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Glicoproteínas/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
16.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385353

RESUMEN

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Asunto(s)
Fiebre Hemorrágica Ebola , Tomografía de Emisión de Positrones , Receptores de GABA , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/diagnóstico por imagen , Fiebre Hemorrágica Ebola/patología , Pulmón/patología , Macaca mulatta , Tomografía de Emisión de Positrones/métodos , Pirazoles/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Bazo/patología
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110410

RESUMEN

Despite more than 300,000 rVSVΔG-ZEBOV-glycoprotein (GP) vaccine doses having been administered during Ebola virus disease (EVD) outbreaks in the Democratic Republic of the Congo (DRC) between 2018 and 2020, seroepidemiologic studies of vaccinated Congolese populations are lacking. This study examines the antibody response at 21 d and 6 mo postvaccination after single-dose rVSVΔG-ZEBOV-GP vaccination among EVD-exposed and potentially exposed populations in the DRC. We conducted a longitudinal cohort study of 608 rVSVΔG-ZEBOV-GP-vaccinated individuals during an EVD outbreak in North Kivu Province, DRC. Participants provided questionnaires and blood samples at three study visits (day 0, visit 1; day 21, visit 2; and month 6, visit 3). Anti-GP immunoglobulin G (IgG) antibody titers were measured in serum by the Filovirus Animal Nonclinical Group anti-Ebola virus GP IgG enzyme-linked immunosorbent assay. Antibody response was defined as an antibody titer that had increased fourfold from visit 1 to visit 2 and was above four times the lower limit of quantification at visit 2; antibody persistence was defined as a similar increase from visit 1 to visit 3. We then examined demographics for associations with follow-up antibody titers using generalized linear mixed models. A majority of the sample, 87.2%, had an antibody response at visit 2, and 95.6% demonstrated antibody persistence at visit 3. Being female and of young age was predictive of a higher antibody titer postvaccination. Antibody response and persistence after Ebola vaccination was robust in this cohort, confirming findings from outside of the DRC.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunogenicidad Vacunal/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Niño , República Democrática del Congo , Brotes de Enfermedades/prevención & control , Femenino , Glicoproteínas/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología , Adulto Joven
18.
J Infect Dis ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487996

RESUMEN

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

19.
J Infect Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801652

RESUMEN

Ebola virus (EBOV) infection results in Ebola virus disease (EVD), an often severe disease with a nonspecific presentation. Since its recognition, periodic outbreaks of EVD continue to occur in sub-Saharan Africa. The 2013-2016 West African EVD outbreak was the largest recorded, resulting in a substantial cohort of EVD survivors with persistent health complaints and variable immune responses. In this study, we characterize humoral immune responses in EVD survivors and their contacts in Eastern Sierra Leone. We found high levels of EBOV IgG in EVD survivors and lower yet substantial antibody levels in household contacts, suggesting subclinical transmission. Neutralizing antibody function was prevalent but variable in EVD survivors, raising questions about the durability of immune responses from natural infection with EBOV. Additionally, we found that certain discrete symptoms-ophthalmologic and auditory-are associated with EBOV IgG seropositivity, while an array of symptoms are associated with the presence of neutralizing antibody.

20.
J Lipid Res ; 65(3): 100512, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38295986

RESUMEN

Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/metabolismo , Lisina/metabolismo , Sitios de Unión , Lípidos , Unión Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda