Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Purinergic Signal ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958821

RESUMEN

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

2.
Biol Pharm Bull ; 47(6): 1172-1178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880625

RESUMEN

The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.


Asunto(s)
Astrocitos , Corteza Cerebral , Hipocampo , Ratones Endogámicos BALB C , Derrota Social , Estrés Psicológico , Animales , Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Masculino , Ratones , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Conexina 43/metabolismo , Conexina 43/genética , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339054

RESUMEN

Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Colorantes de Rosanilina , Humanos , Animales , Ratones , Leucocitos Mononucleares , Ratones Endogámicos NOD , Recurrencia Local de Neoplasia/tratamiento farmacológico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Ciclofosfamida/uso terapéutico , Leucemia/tratamiento farmacológico , Estudios Retrospectivos
4.
Purinergic Signal ; 19(1): 173-183, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36370253

RESUMEN

Pathogenesis of ischemic stroke is mainly characterized by thrombosis and neuroinflammation. Purinergic signaling pathway constitutes adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (ADO). ATP is hydrolyzed to ADP and then to AMP by extracellular nucleotidase CD39; AMP is subsequently converted to adenosine by CD73. All these nucleotides and nucleosides act on purinergic receptors protecting against thrombosis and inhibit inflammation. In addition, many physical methods have been found to play a neuroprotective role through purinergic signaling. This review mainly introduces the role and potential mechanism of purinergic signalings in the treatment of ischemic stroke, so as to provide reference for seeking new treatment methods for stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Trombosis , Humanos , Antígenos CD/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Transducción de Señal , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , 5'-Nucleotidasa/metabolismo , Apirasa/metabolismo
5.
Purinergic Signal ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768408

RESUMEN

We aimed to evaluate the effect of caffeine on viability, apoptosis, migration, redox profile and modulatory effect of the purinergic system of cutaneous melanoma cells. The melanoma cells SK-MEL-28 and non-tumoural CCD-1059sk cells were treated for 24 h with different concentrations of caffeine. Cell viability was evaluated by a biochemical assay and fluorescence microscopy, and flow cytometry assessed apoptosis induction. A wound-healing assay assessed cell migration. The redox profile was evaluated by the levels of markers of reactive oxygen species (ROS), nitric oxide (NOx), total thiols (PSH) and non-protein thiols (NPSH). RT-qPCR and flow cytometry assessed the expression of CD39 and CD73. ATPase/ADPase and AMPase enzyme activities were evaluated by hydrolysis of ATP, ADP and AMP nucleotides. A bioluminescent assay assessed extracellular ATP levels. Caffeine significantly reduced melanoma cell viability and migration and did not affect non-tumoural cells. Caffeine increased ROS levels and improved PSH levels in melanoma cells. Furthermore, caffeine reduced CD39 and CD73 expression, decreased ATP, ADP and AMP nucleotide hydrolysis and increased extracellular ATP levels. We have shown that caffeine reduces metastatic cutaneous melanoma cell viability and migration, induces ROS generation and improves PSH levels. In an unprecedented manner, we also showed that caffeine reduces the expression of CD39 and CD73 and, consequently, ATPase/ADPase/AMPase hydrolytic activity of ectonucleotidases, thus displacing the CD39/CD73 axis and increasing extracellular ATP levels. Therefore, caffeine may be an interesting compound for clinical trials with the CD39/CD73 axis as a therapeutic target.

6.
Purinergic Signal ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165287

RESUMEN

CD39 (NTPDase1-nucleoside triphosphate diphosphohydrolase 1) is a membrane-tethered ectonucleotidase that hydrolyzes extracellular ATP to ADP and ADP to AMP. This enzyme is expressed in a variety of cell types and tissues and has broadly been recognized within vascular tissue to have a protective role in converting "danger" ligands (ATP) into neutral ligands (AMP). In this study, we investigate the enzyme kinetics of CD39 using a Michaelis-Menten modeling framework. We show how the unique situation of having a reaction product also serving as a substrate (ADP) complicates the determination of the governing kinetic parameters. Model simulations using values for the kinetic parameters reported in the literature do not align with corresponding time-series data. This dissonance is explained by CD39 kinetic parameters previously being determined by graphical/linearization methods, which have been shown to distort the underlying error structure and lead to inaccurate parameter estimates. Modern methods of estimating these kinetic parameters using nonlinear least squares are still challenging due to unidentifiable parameter interactions. We propose a workflow to accurately determine these parameters by isolating the ADPase and ATPase reactions and estimating the respective ADPase parameters and ATPase parameters with independent data sets. Theoretically, this ensures all kinetic parameters are identifiable and reliable for future prospective model simulations involving CD39. These kinds of mathematical models can be used to understand how circulating purinergic nucleotides affect disease etiology and potentially inform the development of corresponding therapies.

7.
Bioorg Chem ; 134: 106450, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924652

RESUMEN

Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.


Asunto(s)
5'-Nucleotidasa , Fosfatasa Alcalina , Ratas , Humanos , Animales , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química , Sulfonamidas/farmacología , Sulfonamidas/química , Cromonas/farmacología
8.
Pflugers Arch ; 474(5): 553-565, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35169901

RESUMEN

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.


Asunto(s)
Anemia de Células Falciformes , Reticulocitos , Adenosina Trifosfato/metabolismo , Anemia de Células Falciformes/metabolismo , Apirasa/metabolismo , Cationes/metabolismo , Células Cultivadas , Eritrocitos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hipoxia/metabolismo , Probenecid/metabolismo , Reticulocitos/metabolismo , Suramina/metabolismo , Suramina/farmacología
9.
J Cell Sci ; 133(7)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32079656

RESUMEN

Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.


Asunto(s)
Apirasa , Leishmaniasis , Adenosina , Adenosina Trifosfato , Animales , Antígenos CD/genética , Apirasa/genética , Ratones , Ratones Endogámicos BALB C
10.
Bioorg Chem ; 118: 105457, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798458

RESUMEN

Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Pirimidinonas/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Disolventes Eutécticos Profundos/química , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad
11.
Am J Physiol Cell Physiol ; 320(1): C15-C29, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052071

RESUMEN

Extracellular diphosphate and triphosphate nucleotides are released from activated or injured cells to trigger vascular and immune P2 purinergic receptors, provoking inflammation and vascular thrombosis. These metabokines are scavenged by ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1 or CD39). Further degradation of the monophosphate nucleoside end products occurs by surface ecto-5'-nucleotidase (NMPase) or CD73. These ectoenzymatic processes work in tandem to promote adenosinergic responses, which are immunosuppressive and antithrombotic. These homeostatic ectoenzymatic mechanisms are lost in the setting of oxidative stress, which exacerbates inflammatory processes. We have engineered bifunctional enzymes made up from ectodomains (ECDs) of CD39 and CD73 within a single polypeptide. Human alkaline phosphatase-ectodomain (ALP-ECD) and human acid phosphatase-ectodomain (HAP-ECD) fusion proteins were also generated, characterized, and compared with these CD39-ECD, CD73-ECD, and bifunctional fusion proteins. Through the application of colorimetrical functional assays and high-performance liquid chromatography kinetic assays, we demonstrate that the bifunctional ectoenzymes express high levels of CD39-like NTPDase activity and CD73-like NMPase activity. Chimeric CD39-CD73-ECD proteins were superior in converting triphosphate and diphosphate nucleotides into nucleosides when compared with ALP-ECD and HAP-ECD. We also note a pH sensitivity difference between the bifunctional fusion proteins and parental fusions, as well as ectoenzymatic property distinctions. Intriguingly, these innovative reagents decreased platelet activation to exogenous agonists in vitro. We propose that these chimeric fusion proteins could serve as therapeutic agents in inflammatory diseases, acting to scavenge proinflammatory ATP and also generate anti-inflammatory adenosine.


Asunto(s)
5'-Nucleotidasa/farmacología , Antiinflamatorios/farmacología , Apirasa/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Ingeniería de Proteínas , 5'-Nucleotidasa/química , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Nucleótidos de Adenina/metabolismo , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Apirasa/química , Apirasa/genética , Apirasa/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/farmacología , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Exp Eye Res ; 202: 108356, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197452

RESUMEN

The inflammatory process plays a crucial role in frailty syndrome, which can appear in middle age and is associated with a poor health outcome. Consequently, gerontologists recommend screening inflammatory biomarkers in middle-aged adults to detect frailty and, therefore, prevent chronic diseases and mortality. External factors could be a risk factor for frailty because they can generate and extend the inflammatory process. For these reasons, we analysed the effect of long-term contact lens wear on mRNA level of genes linked to inflammation (IL-6, NLRP3, NK1R, CD73, MUC16 and TRPV1 genes) in conjunctival cells of middle-aged individuals, by quantitative PCR. Middle-aged contact lens wearers presented a significant increase of NLRP3 and MUC16 mRNA level as well as a decrease of CD73 mRNA level, in comparison with non-contact lens wearers. Additionally, we checked for a potential correlation between these transcript levels and clinical changes of the participants' ocular surface. Unlike molecular analysis, clinical examination fails to detect inflammation in contact lens wearers. These data suggest that long-term contact lens wear could trigger an inflammatory response in middle age orchestrated by NLRP3 inflammasome and modulated by CD73 and MUC16 proteins. Further studies are needed to confirm our gene expression findings at the protein level as well as to investigate the potential role of long-term CL wear in the onset of ocular frailty.


Asunto(s)
Conjuntiva/metabolismo , Lentes de Contacto Hidrofílicos , Anciano Frágil , Fragilidad/genética , Regulación de la Expresión Génica , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Anciano , Fragilidad/metabolismo , Humanos , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis
13.
Bioorg Chem ; 107: 104577, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450542

RESUMEN

Three series of nucleotide analogues were synthesized and evaluated as potential CD73 inhibitors. Nucleobase replacement consisted in connecting the appropriate aromatic or purine residues through a triazole moiety that is generated from 1,3-dipolar cycloaddition. The first series is related to 4-substituted-1,2,3-triazolo-ß-hydroxyphosphonate ribonucleosides. Additional analogues were also obtained, in which the phosphonate group was replaced by a bisphosphonate pattern (P-C-P-C, series 2) or the ribose moiety was removed leading to acyclic derivatives (series 3). The ß-hydroxyphosphonylphosphonate ribonucleosides (series 2) were found to be potent inhibitors of CD73 using both purified recombinant protein and cell-based assays. Two compounds (2a and 2b) that contained a bis(trifluoromethyl)phenyl or a naphthyl substituents proved to be the most potent inhibitors, with IC50 values of 4.8 ± 0.8 µM and 0.86 ± 0.2 µM, compared to the standard AOPCP (IC50 value of 3.8 ± 0.9 µM), and were able to reverse the adenosine-mediated immune suppression on human T cells. This series of compounds illustrates a new type of CD73 inhibitors.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Algoritmos , Nucleótidos/farmacología , Triazoles/farmacología , 5'-Nucleotidasa/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Humanos , Cinética , Estructura Molecular , Nucleótidos/síntesis química , Nucleótidos/química , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
14.
Mar Drugs ; 19(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499103

RESUMEN

Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Apirasa/antagonistas & inhibidores , Polisacáridos/fisiología , Pirofosfatasas/antagonistas & inhibidores , Algas Marinas , Ésteres del Ácido Sulfúrico/farmacología , Adenosina Trifosfato/metabolismo , Apirasa/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Hidrólisis/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Pirofosfatasas/metabolismo , Algas Marinas/química , Algas Marinas/aislamiento & purificación , Ésteres del Ácido Sulfúrico/química , Ésteres del Ácido Sulfúrico/aislamiento & purificación
15.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575993

RESUMEN

In previous studies using isolated, paced guinea pig left atria, we observed that FSCPX, known as a selective A1 adenosine receptor antagonist, paradoxically increased the direct negative inotropic response to A1 adenosine receptor agonists (determined using concentration/effect (E/c) curves) if NBTI, a nucleoside transport inhibitor, was present. Based on mathematical modeling, we hypothesized that FSCPX blunted the cardiac interstitial adenosine accumulation in response to nucleoside transport blockade, probably by inhibiting CD39 and/or CD73, which are the two main enzymes of the interstitial adenosine production in the heart. The goal of the present study was to test this hypothesis. In vitro CD39 and CD73 inhibitor assays were carried out; furthermore, E/c curves were constructed in isolated, paced rat and guinea pig left atria using adenosine, CHA and CPA (two A1 adenosine receptor agonists), FSCPX, NBTI and NBMPR (two nucleoside transport inhibitors), and PSB-12379 (a CD73 inhibitor), measuring the contractile force. We found that FSCPX did not show any inhibitory effect during the in vitro enzyme assays. However, we successfully reproduced the paradox effect of FSCPX in the rat model, mimicked the "paradox" effect of FSCPX with PSB-12379, and demonstrated the lipophilia of FSCPX, which could explain the negative outcome of inhibitor assays with CD39 and CD73 dissolved in a water-based solution. Taken together, these three pieces of indirect evidence are strong enough to indicate that FSCPX possesses an additional action besides the A1 adenosine receptor antagonism, which action may be the inhibition of an ectonucleotidase. Incidentally, we found that POM-1 inhibited CD73, in addition to CD39.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Antagonistas del Receptor de Adenosina A1/farmacología , Apirasa/antagonistas & inhibidores , Receptor de Adenosina A1/metabolismo , Xantinas/farmacología , 5'-Nucleotidasa/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Cobayas , Masculino , Ratas , Ratas Wistar
16.
Cytokine ; 136: 155255, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866897

RESUMEN

Distinct populations of Trypanosoma cruzi interact with mammalian cardiac muscle cells causing different inflammation patterns and low heart functionality. During T. cruzi infection, the extracellular ATP is hydrolyzed to tri- and/or diphosphate nucleotides, based on the infectivity, virulence, and regulation of the inflammatory response. T. cruzi carries out this hydrolysis through the T. cruzi ectonucleotidase, NTPDase-1 (TcNTPDase-1). This study aimed to evaluate the role of TcNTPDase-1 in culture rich in metacyclic trypomastigote forms (MT) and cell culture-derived trypomastigote forms (CT) from Colombiana (discrete typing unit - DTU I), VL-10 (DTU II), and CL (DTU VI) strains of T. cruzi. For this, we measured TcNTPDase-1 activity in suramin-treated and untreated parasites and infected J774 cells and C57BL/6 mice with suramin pre-treated parasites to assess parasitic and inflammatory cardiac profile in the acute phase of infection. Our data indicated a higher TcNTPDase-1 activity for ATP in culture rich in metacyclic trypomastigote forms from Colombiana strain in comparison to those from VL-10 and CL strains. The cell culture-derived trypomastigote forms from CL strain presented higher capacity to hydrolyze ATP than those from Colombiana and VL-10 strains. Suramin inhibited ATP hydrolysis in all studied parasite forms and strains. Suramin pre-treated parasites reduced J774 cell infection and increased nitrite production in vitro. In vivo studies showed a reduction of inflammatory infiltrate in the cardiac tissues of animals infected with cell culture-derived trypomastigote forms from suramin pre-treated Colombiana strain. In conclusion, TcNTPDase-1 activity in trypomastigotes forms drives part of the biological characteristics observed in distinct DTUs and may induce cardiac pathogenesis during T. cruzi infection.


Asunto(s)
Antígenos CD , Apirasa , Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Factores de Virulencia , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apirasa/genética , Apirasa/metabolismo , Línea Celular Tumoral , Enfermedad de Chagas/enzimología , Enfermedad de Chagas/genética , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Anal Biochem ; 603: 113774, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32445636

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase 4 (NPP4) is a membrane-bound enzyme that hydrolyzes extracellular diadenosine polyphosphates such as diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) yielding mononucleotides. NPP4 on the surface of endothelial cells was reported to promote platelet aggregation by hydrolyzing Ap3A to ADP, which activates pro-thrombotic G protein-coupled P2Y1 and P2Y12 receptors. Thus, NPP4 inhibitors have potential as novel antithrombotic drugs. In the present study we expressed soluble human NPP4 in Sf9 insect cells and established an enzyme assay using diadenosine tetraphosphate (Ap4A) as a substrate. The reaction product ATP was quantified by luciferin-luciferase reaction in a 96-well plate format. The sensitive method displayed a limit of detection (LOD) of 14.6 nM, and a Z'-factor of 0.68 indicating its suitability for high-throughput screening. The new assay was applied for studying enzyme kinetics and led to the identification of the first NPP4 inhibitors.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Mediciones Luminiscentes/métodos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Cinética , Hidrolasas Diéster Fosfóricas/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
18.
Purinergic Signal ; 16(4): 543-559, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33129204

RESUMEN

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacocinética , Agonistas del Receptor de Adenosina A3/farmacocinética , Profármacos/farmacocinética , Agonistas del Receptor Purinérgico P2Y/farmacocinética , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacocinética , Animales , Nucleótidos de Desoxiadenina/farmacocinética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A3/metabolismo , Receptores Purinérgicos P2Y1/metabolismo
19.
Bioorg Chem ; 100: 103827, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402802

RESUMEN

Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrazonas/química , Hidrazonas/farmacología , 5'-Nucleotidasa/metabolismo , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/metabolismo , Benzopiranos/síntesis química , Benzopiranos/química , Benzopiranos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Humanos , Hidrazonas/síntesis química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Ácidos Sulfínicos/síntesis química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacología
20.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225110

RESUMEN

BACKGROUND: CD73 is an ectonucleotidase regulating extracellular adenosine concentration and plays an important role in adenosine-mediated immunosuppressive pathways. The efficacy of CD73-targeted therapy depends on the expression levels of CD73; therefore, monitoring CD73 status in cancer patients would provide helpful information for selection of patients who would benefit from CD73-targeted therapy. Here, we evaluated the ability of 111In-labeled antibody 067-213, which has high affinity for human CD73, to act as a noninvasive imaging probe. METHODS: Cell binding and competitive inhibition assays for 111In-labeled 067-213 were conducted using MIAPaCa-2 (high CD73 expression) and A431 (low CD73 expression) cells. For in vivo assessments, biodistribution and SPECT/CT studies were conducted in MIAPaCa-2 and A431 tumor-bearing mice. To estimate the absorbed dose in humans, biodistribution and SPECT/CT studies were conducted in healthy rats. RESULTS: 111In-labeled 067-213 bound to MIAPaCa-2 and A431 cells in a CD73-dependent manner and the affinity loss after 111In-labeling was limited. Biodistribution and SPECT/CT studies with 111In-labeled 067-213 in mice showed high uptake in MIAPaCa-2 tumors and lower uptake in A431 tumors. In rats, the probe did not show high uptake in normal organs, including endogenously CD73-expressing organs. The estimated absorbed doses in humans were reasonably low. CONCLUSIONS: 111In-labeled 067-213 showed CD73-expression-dependent tumor uptake and low uptake in normal organs and tissues. Radiolabeled 067-213 holds promise as an imaging probe for noninvasive evaluation of CD73 expression levels in patients. Our data encourage further clinical studies to clarify a role for CD73 monitoring in patients receiving CD73-targeted immune therapy.


Asunto(s)
5'-Nucleotidasa/inmunología , Anticuerpos Monoclonales/inmunología , Radiofármacos/farmacocinética , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Indio/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/química , Ratas , Ratas Sprague-Dawley , Distribución Tisular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda