Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Purinergic Signal ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958821

RESUMEN

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

2.
Bioorg Chem ; 134: 106450, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924652

RESUMEN

Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.


Asunto(s)
5'-Nucleotidasa , Fosfatasa Alcalina , Ratas , Humanos , Animales , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/química , Sulfonamidas/farmacología , Sulfonamidas/química , Cromonas/farmacología
3.
Bioorg Chem ; 118: 105457, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798458

RESUMEN

Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Pirimidinonas/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Disolventes Eutécticos Profundos/química , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad
4.
Mar Drugs ; 19(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499103

RESUMEN

Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Apirasa/antagonistas & inhibidores , Polisacáridos/fisiología , Pirofosfatasas/antagonistas & inhibidores , Algas Marinas , Ésteres del Ácido Sulfúrico/farmacología , Adenosina Trifosfato/metabolismo , Apirasa/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Hidrólisis/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Pirofosfatasas/metabolismo , Algas Marinas/química , Algas Marinas/aislamiento & purificación , Ésteres del Ácido Sulfúrico/química , Ésteres del Ácido Sulfúrico/aislamiento & purificación
5.
Bioorg Chem ; 100: 103827, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402802

RESUMEN

Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.


Asunto(s)
5'-Nucleotidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hidrazonas/química , Hidrazonas/farmacología , 5'-Nucleotidasa/metabolismo , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/metabolismo , Benzopiranos/síntesis química , Benzopiranos/química , Benzopiranos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Humanos , Hidrazonas/síntesis química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Ácidos Sulfínicos/síntesis química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacología
6.
Front Immunol ; 14: 1173634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711611

RESUMEN

Introduction: Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results: In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion: NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.


Asunto(s)
Glioma , Heparina , Humanos , Heparina/farmacología , Inmunoterapia , Anticoagulantes , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico
7.
Front Pharmacol ; 8: 54, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261095

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5'-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5'-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5'-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5'-adenosine monophosphate (p-Nph-5'-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP.

8.
Expert Opin Ther Pat ; 27(12): 1291-1304, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28870136

RESUMEN

INTRODUCTION: Ectonucleotidases are a broad family of metallo-ectoenzymes that are responsible for hydrolysing a variety of nucleotides to nucleosides, hence orchestrating the activation of P1 and P2 cell receptors via controlled release of nucleotides and nucleosides. Many disorders such as impaired calcification including aortic calcification, neurological and immunological disorders, platelet aggregation, cell proliferation and metastasis. are characterized by an increase in expression of these ectonucleotidases. Consequently, selective inhibitors of ectonucleotidases are required for therapeutic intervention. Area covered: Several classes of compounds such as purine, nucleotide derivatives (e.g., ARL67156) and monoclonal antibodies, have shown promising ectonucleotidase inhibitory potential. This review discusses chemistry and therapeutic applications of ectonucleotidase inhibitors patented from 2011 to 2016. Expert opinion: All eukaryotic cells express nucleotide and nucleoside receptors on their cell surface and are capable of releasing extracellular nucleotides. Ectonucleotidases are a broad family of metallo-ectoenzymes that hydrolyze a variety of nucleotides to nucleosides. These extracellular nucleotides and nucleosides are important cell signalling molecules and mediate a variety of (patho)physiological processes by acting upon their respective P1 and/or P2 receptors. Discovery of molecules that can selectively inhibit or activate ectonucleotidases is crucial from therapeutic point of view, since it allows human intervention into purinergic cell signalling, thereby allowing us to modulate related (patho)physiological processes as desired.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Animales , Humanos , Hidrolasas/metabolismo , Nucleósidos/metabolismo , Nucleótidos/metabolismo , Patentes como Asunto , Transducción de Señal/efectos de los fármacos
9.
Eur J Med Chem ; 115: 484-94, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27054295

RESUMEN

A facile method for the modulation of 2-alkoxy side chain of 3-formylchromone enamines has been exploited for the synthesis of a series of 2-alkoxy-3-(sulfonylarylaminomethylene)-chroman-4-ones. This modulation was achieved by simply changing the alcoholic reaction media from methanol to ethanol, iso-propanol and n-butanol while reacting various 3-formylchromones with aminobenzenesulfonamides. Alcohols are sufficiently nucleophilic and add into the C2-C3 olefinic bond of 3-formylchromones without causing any ring cleavage. The resulting 2-alkoxy-3-(sulfonylarylaminomethylene)-chroman-4-ones were found to be potent and selective inhibitors of ecto-5'-nucleotidase and alkaline phosphatases (TNAP and IAP). Detailed enzyme kinetics studies revealed competitive inhibition against alkaline phosphatases and un-competitive inhibition against rat and human ecto-5'-nucleotidase. The most active TNAP inhibitor 23 (Ki = 0.078 ± 0.001 µM), exhibited 28 times more selectivity for TNAP over IAP (Ki = 2.18 ± 0.12 µM). Compound 9 was most active IAP inhibitor (Ki = 0.24 ± 0.01 µM), and was 300 times more selective towards IAP than TNAP (Ki = 72.9 ± 1.68 µM). Compound 40 was most active human ecto-5'-nucleotidase inhibitor exhibiting inhibition in low nanomolar range (Ki = 14 nM).


Asunto(s)
Cromanos/farmacología , Inhibidores Enzimáticos/farmacología , Nucleotidasas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda