Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Cell Tissue Res ; 397(2): 81-95, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748215

RESUMEN

In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na+/K+-ATPase (NKA) and anti-vacuolar-type H+-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na+/H+ exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.


Asunto(s)
Branquias , Larva , Animales , Larva/metabolismo , Branquias/metabolismo , Branquias/citología , Branquias/embriología , Tiburones/embriología , Tiburones/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología
2.
Glob Chang Biol ; 30(7): e17373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967106

RESUMEN

Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.


El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.


Asunto(s)
Cambio Climático , Animales , Océano Pacífico , Medición de Riesgo , Ecosistema , Peces/fisiología
3.
Glob Chang Biol ; 30(1): e17157, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273525

RESUMEN

While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.


Asunto(s)
Ecosistema , Tiburones , Animales , Cambio Climático , Fertilidad , Peces
4.
Conserv Biol ; 38(4): e14263, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38578170

RESUMEN

Although human-made barriers to animal movement are ubiquitous across many types of ecosystems, the science behind these barriers and how to ameliorate their effects lags far behind in marine environments compared with terrestrial and freshwater realms. Using juvenile sawfish in an Australian nursery habitat as a model system, we aimed to assess the effects of a major anthropogenic development on the movement behavior of coastal species. We compared catch rates and movement behavior (via acoustic telemetry) of juvenile green sawfish (Pristis zijsron) before and after a major coastal structure was built in an important nursery habitat. Acoustic tracking and catch data showed that the development did not affect levels of sawfish recruitment in the nursery, but it did constrain movements of juveniles moving throughout the nursery, demonstrating the reluctance of shoreline-associated species to travel around large or unfamiliar coastal structures. Given the current lack of information on human-made movement barriers in the marine environment, these findings highlight the need for further research in this area, and we propose the development of and experimentation with marine animal crossings as an important area of emerging research.


Efectos del desarrollo costero sobre los movimientos del pez sierra y la necesidad de soluciones para el cruce de animales marinos Resumen Mientras que las barreras construidas por humanos que limitan el movimiento de animales son ubicuas en muchos tipos de ecosistemas, la ciencia que sustenta estas barreras y la reducción de sus impactos está muy retrasada en ambientes marinos en comparación con medios terrestres y dulceacuícolas. Utilizando peces sierra juveniles en un hábitat de vivero australiano como sistema modelo, intentamos evaluar los efectos de un importante desarrollo antropogénico sobre el comportamiento de especies costeras. Comparamos las tasas de captura y el comportamiento de movimiento (mediante telemetría acústica) de peces sierra verdes juveniles (Pristis zijsron) antes y después de que se construyera infraestructura costera en un importante hábitat de vivero. El seguimiento acústico y los datos de captura mostraron que el desarrollo no afectó los niveles de reclutamiento de pez sierra en el vivero, pero sí restringió los movimientos de los juveniles desplazándose por el vivero, lo cual demuestra la renuencia de las especies asociadas a la costa a viajar alrededor de estructuras costeras grandes o desconocidas. Dada la actual falta de información sobre las barreras de movimiento creadas por el hombre en el medio marino, estos hallazgos destacan la necesidad de realizar más investigaciones en esta campo, y proponemos el desarrollo y la experimentación con cruces para animales marinos como un área importante de investigación emergente.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Alismatales/fisiología , Australia , Movimiento
5.
Environ Sci Technol ; 58(29): 13087-13098, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38995999

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, ∼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.


Asunto(s)
Tiburones , Contaminantes Químicos del Agua , Animales , Tiburones/metabolismo , Monitoreo del Ambiente , Bahamas , Fluorocarburos/análisis , New York , Cadena Alimentaria
6.
Gen Comp Endocrinol ; 350: 114470, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346454

RESUMEN

Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.


Asunto(s)
Squalus acanthias , Squalus , Animales , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacología , Glucosa/metabolismo , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología
7.
J Fish Dis ; 47(5): e13917, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242861

RESUMEN

Sixteen whitespotted bamboo sharks (Chiloscyllium plagiosum) with histologically similar bacterial abscesses were submitted to Northwest ZooPath from nine zoo and aquarium institutions over a 17-year period. These abscesses were characterized by inflammatory cell infiltrates and necrosis with intralesional small, Gram-positive, acid-fast negative, cocci bacteria. The clinical presentation, histologic findings, and culture results indicate that Enterococcus faecalis is a relatively common cause of these lesions in whitespotted bamboo sharks. This organism also provides a treatment challenge due to its inherent antibiotic-resistant properties and ability to form biofilms, confounding the host's immune response. Enterococcus faecalis represents an important cause for abscess formation and cellulitis in captive whitespotted bamboo sharks.


Asunto(s)
Enfermedades de los Peces , Tiburones , Animales , Tiburones/fisiología , Absceso/veterinaria , Bacterias , Programas Controlados de Atención en Salud
8.
J Therm Biol ; 124: 103943, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39151217

RESUMEN

Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (MO2max and MO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (MO2max) and 1.6 (MO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.


Asunto(s)
Termotolerancia , Animales , Calor , Ecosistema , Consumo de Oxígeno , Humedales , Temperatura Corporal
9.
J Fish Biol ; 105(3): 1004-1007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830639

RESUMEN

Dystocia, or obstructed labor, is a well-documented phenomenon in various captive vertebrates, including fish. However, despite the documentation of dystocia in several viviparous (live-bearing) Chondrichthyan species (i.e., sharks, rays, skates, and chimaeras), there are no reports to date of dystocia in any oviparous (egg-laying) species. Here we present a case of a captive female epaulette shark (Hemiscyllium ocellatum) that demonstrated symptoms of dystocia in a research-related captive breeding programme. This communication serves as documentation that dystocia can occur in oviparous Chondrichthyans, and this information can help inform researchers and veterinary practitioners for improved care.


Asunto(s)
Distocia , Tiburones , Animales , Tiburones/fisiología , Femenino , Distocia/veterinaria , Oviparidad , Embarazo , Enfermedades de los Peces
10.
J Fish Biol ; 104(6): 1940-1946, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551100

RESUMEN

This report updates our understanding of whale shark occurrences in The Bahamas by drawing upon a variety of data sources. Our findings reveal previously unreported sighting locations, often associated with tourism activities, underscoring the pivotal role played by nontraditional data sources in addressing knowledge gaps. These revelations emphasize the ongoing necessity for monitoring efforts. Additionally, we have found cases that raise concerns related to unregulated human-shark interactions in the region, highlighting the pressing need for sustainable tourism practices within Bahamian waters.


Asunto(s)
Conservación de los Recursos Naturales , Tiburones , Turismo , Animales , Bahamas
11.
J Fish Biol ; 105(1): 46-58, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622912

RESUMEN

The blue shark is a highly migratory species with a worldwide distribution, making it susceptible to multiple fishing fleets across the globe. In southern Brazil, it is an important target, comprising up to 40% of the total biomass landed by the commercial surface longline fleet. This study aims to contribute to a better understanding of how the species uses the region and to update its life-history information available for future assessments. Over five consecutive years (2018-2022) of landings and onboard monitoring, we gathered size data and vertebral samples to describe the species size composition in the region, as well as its seasonal and interannual variability and to update estimated life-history parameters. The results showed that southern Brazil is mainly inhabited by large juvenile males that arrive during winter (July-September) and stay until spring (October-December), when their frequency decreases. Small adult males are present throughout the year but in higher frequencies during summer. A small number of adult females are present with higher frequencies during spring and summer, which decreases during the austral autumn and winter. Some variability in the presence of each life stage was observed among years. The estimated life-history parameters were as follows: L∞: 255.02 cm fork length (FL), k: 0.20, L0:35.68 cm FL for males; L∞: 246.47 cm FL, k: 0.23, L0:36.77 cm FL for females; and L∞: 269.58 cm FL, k: 0.18, L0:36.19 cm FL for pooled sexes. However, the estimated values must be cautiously interpreted, as the obtained samples cannot be construed as representative of the entire harvested stock due to the lack of consistent presence of some life stages in the study region.


Asunto(s)
Tamaño Corporal , Estaciones del Año , Tiburones , Animales , Tiburones/crecimiento & desarrollo , Brasil , Masculino , Femenino , Rasgos de la Historia de Vida
12.
J Fish Biol ; 104(6): 1698-1708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38420688

RESUMEN

Knowledge of thermal tolerance limits provides important clues to the capacity of a species to withstand acute and chronic thermal changes. Climate models predict the increase and intensification of events such as heat waves, therefore understanding the upper thermal limits that a species can tolerate has become of utmost importance. We measured the upper thermal tolerance of the endemic Magdalena river stingray Potamotrygon magdalenae acclimated to experimental conditions, and then used critical thermal methodology to find the temperature at which an organism reaches a critical endpoint where locomotory activity becomes disorganized and the animal loses its ability to escape from conditions that will promptly lead to its death. We also describe the behavioral response of individuals to acute thermal stress and infer the possible consequences of temperature increases in the habitats of P. magdalenae populations. There were no significant differences between sexes in temperature tolerance or behavior. The critical thermal maximum (39°C) was 5.9°C above the maximum recorded temperature for the study area. Although P. magdalenae was tolerant to high temperature and currently is not living at its upper thermal limit, its survival in Guarinocito Pond will be threatened if temperatures continue to increase, considering the warming scenarios predicted for tropical regions due to climate change, even including short-term climate phenomena such as El Niño.


Asunto(s)
Rajidae , Animales , Masculino , Rajidae/fisiología , Femenino , Ríos , Termotolerancia , Temperatura , Calor , Conducta Animal , Aclimatación
13.
J Fish Biol ; 104(6): 1848-1859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491854

RESUMEN

Elasmobranchs are covered in scale-like structures called dermal denticles, comprising dentine and enameloid. These structures vary across the body of an individual and between species, and are frequently shed and preserved in marine sediments. With a good understanding of denticle morphology, current and historical elasmobranch diversity and abundance might be assessed from sediment samples. Here, replicate samples of denticles from the bodies of several known (deceased) shark species were collected and characterized for morphology before being assigned morphotypes. These data were used to expand the established literature describing denticles and to investigate intra- and interspecific variability, with the aim of increasing the viability of using sediment samples to assess elasmobranch diversity and abundance. Denticle morphology was influenced more by life-history traits than by species, where demersal species were largely characterized by generalized function and defense denticles, whereas pelagic and benthopelagic species were characterized by drag-reduction denticles. Almost all species possessed abrasion strength or defense denticles on the snout, precluding their utility for separating species. In a separate manipulative experiment, samples of denticles were collected from sediments in two aquaria with known elasmobranchs to determine their utility for reliably separating species. Visual examination of denticles, morphometric measurements, scaled photographs, and reference collections allowed for some precise identification, but not always to the species level. Ongoing work to develop denticle reference collections could help to identify past and present families and, in some cases, species.


Asunto(s)
Tiburones , Animales , Tiburones/anatomía & histología , Tiburones/fisiología , Sedimentos Geológicos , Australia , Elasmobranquios/anatomía & histología , Elasmobranquios/clasificación , Elasmobranquios/fisiología , Rasgos de la Historia de Vida
14.
J Fish Biol ; 104(6): 1875-1887, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501373

RESUMEN

The short-tail yellownose skate, Zearaja brevicaudata, occurs off southern Brazil and along the Argentine continental shelf, including waters surrounding the Islas Malvinas and the upper slope, and is very frequently caught by trawl fisheries throughout its range. The age, growth, and maturity of Z. brevicaudata were investigated using 204 individuals collected by commercial fishing vessels from northern Argentina, between March 2016 and September 2019. Age was determined on a sample comprising vertebrae from 151 individuals, 60 males, ranging in size from 391 to 956 mm total length (TL), and 91 females, ranging in size from 324 to 1060 mm TL. Maximum ages determined for males and females were 22 and 29 years, respectively. A Bayesian framework was employed with a set of three candidate models to estimate growth parameters (von Bertalanffy, Gompertz, and Logistic). The von Bertalanffy model had the best fit, and the sexes showed undistinguishable growth parameters. For sexes combined, derived growth mean parameters (± S.D.) were L∞ = 1081 mm ± 64.34 mm, k = 0.09 ± 0.01 years-1, and L0 = 248 mm ± 23.52 mm. The age at maturity was estimated at 13.15 and 14.66 years for males and females, respectively.


Asunto(s)
Rajidae , Animales , Rajidae/crecimiento & desarrollo , Masculino , Femenino , Argentina , Rasgos de la Historia de Vida , Explotaciones Pesqueras , Teorema de Bayes , Brasil , Maduración Sexual , Tamaño Corporal
15.
J Fish Biol ; 104(3): 898-900, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37983935

RESUMEN

Understanding the respiratory modes of sharks has important implications for studying the metabolism, energetics, and behavioral strategies of different species. Here we provide the first reported observations of resting behavior in the gray reef shark Carcharhinus amblyrhynchos, a species typically considered an obligate ram ventilator. Observations were made at several locations in the Republic of Seychelles, where sharks were found resting under reef ledges and were unresponsive to the presence of divers. These findings update our understanding of the respiratory mode of this species and have implications for future research.


Asunto(s)
Tiburones , Natación , Animales , Seychelles
16.
J Fish Biol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126281

RESUMEN

Photographic identification (photo ID) is an established method that is used to count animals and track individuals' movements. This method performs well with some species of elasmobranchs (i.e., sharks, skates, and rays) where individuals have distinctive skin patterns. However, the unique skin patterns used for ID must be stable through time to allow re-identification of individuals in future sampling events. More recently, artificial intelligence (AI) models have substantially decreased the labor-intensive process of matching photos in extensive photo ID libraries and increased the reliability of photo ID. Here, photo ID and AI are used for the first time to identify epaulette sharks (Hemiscyllium ocellatum) at different life stages for approximately 2 years. An AI model was developed to assess and compare the reliability of human-classified ID patterns in juvenile and neonate sharks. The model also tested the persistence of unique patterns in adult sharks. Results indicate that immature life stages are unreliable for pattern identification, using both human and AI approaches, due to the plasticity of these subadult growth forms. Mature sharks maintain their patterns through time and can be identified by AI models with approximately 86% accuracy. The approach outlined in this study has the potential of validating the stability of ID patterns through time; however, testing on wild populations and long-term datasets is needed. This study's novel deep neural network development strategy offers a streamlined and accessible framework for generating a reliable model from a small data set, without requiring high-performance computing. Since many photo ID studies commence with limited datasets and resources, this AI model presents practical solutions to such constraints. Overall, this approach has the potential to address challenges associated with long-term photo ID data sets and the application of AI for shark identification.

17.
J Fish Biol ; 105(4): 1044-1059, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38978288

RESUMEN

The genus Urotrygon comprises small- to medium-sized endemic round rays on the American continent and has undergone several synonymization processes. Here, we used an integrative taxonomic approach, including meristic, morphometric, and mtDNA analyses, to resolve the particularly intricate relationship among Urotrygon munda Gill, 1863, Urotrygon chilensis (Günther, 1872), and Urotrygon asterias (Jordan & Gilbert, 1883). The latter species is currently a synonym of U. munda but is also considered the U. chilensis "northern morphotype." These taxonomic entities have historically been confounded, mainly due to their phenotypical resemblance along their geographic distribution in the eastern Pacific. We assessed 78 specimens (43 "northern" and 30 "southern morphotypes" of U. chilensis, as well as 5 U. munda) using 19 external variables for taxonomic and morphometric analysis. Distinct meristic patterns, including pectoral and pelvic ceratotrichia, vertebrae number, and thorn distribution along the dorsal midline, were observed in the series-type specimens of the three taxonomic entities. Our multivariate morphometric analyses consistently differentiated the three groups as distinct taxonomic entities, with an overall classification accuracy of 66.7%. The meristic results also provided reliable information distinguishing the three entities. Based on the nicotinamide adenine dinucleotide (NADH2) and cytochrome oxidase subunit I (COI) genes, our phylogenetic analysis were consistent with the morphometric and meristic data, supporting these three entities as distinct species having their own evolutionary lineages. Our comprehensive approach confidently demonstrated that the northern U. chilensis morphotype matched and corresponded to the description of the Starry round ray, U. asterias, confirming its taxonomic resurrection as a valid species distinct from U. chilensis and U. munda. The geographic distribution of U. asterias spans from the tropical west coast of Mexico (including the Gulf of California) to Costa Rica, revealing that microevolutionary processes have well-defined population clades within this range. Furthermore, U. chilensis is unequivocally established as the sole Urotrygon species occurring south of the Guayaquil marine ecoregion. In addition, the public COI and NADH2 sequences available for Urotrygon hosted in the ad hoc online databases were found to be misidentified, emphasizing the need for rigorous taxonomic scrutiny in this group. Finally, our research underscores the significance of an integrative approach that combines morphometric, meristic, and molecular techniques with historical data to disentangle the complexities of closely related taxa.


Asunto(s)
ADN Mitocondrial , Filogenia , Rajidae , Animales , Rajidae/genética , Rajidae/anatomía & histología , Rajidae/clasificación , ADN Mitocondrial/genética , Análisis de Secuencia de ADN , Variación Genética
18.
Vet Anaesth Analg ; 51(1): 71-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065822

RESUMEN

OBJECTIVE: To determine the pharmacokinetics of meloxicam in the nursehound shark (Scyliorhinus stellaris) during multiple dose administration. STUDY DESIGN: Prospective experimental trial. ANIMALS: A total of eight clinically healthy adult nursehounds (four males, four females). METHODS: Meloxicam was administered intramuscularly at a dose of 1.5 mg kg-1 once daily for 7 days. Blood samples were collected from the caudal vein for pharmacokinetic analysis at 2.5 hours and 24 hours after drug administration. After a 4 week washout period, meloxicam was administered orally at the same dose at 12 hour intervals for three repeated doses. Blood samples were collected at 1, 2, 4, 6, 8, 12, 24, 36 and 48 hours after the first administration. Sharks were visually monitored during each study and 4 weeks afterwards for side effects or signs of toxicity. Time required to achieve steady state was assessed by visual inspection and statistical comparison of peak and trough concentrations using a Friedman test; comparison between sexes was performed using a Mann-Whitney U test and p-value was set at 0.05. RESULTS: No animal died or showed clinical signs of toxicity during the study. Meloxicam administered orally did not produce detectable concentrations in plasma. After intramuscular administration, steady state was achieved after five doses, and mean trough and peak plasma concentrations at steady state were 1.76 ± 0.21 µg mL-1 and 3.02 ± 0.23 µg mL-1, respectively. Mean peak concentration accumulation ratio was 2.50 ± 0.22. CONCLUSIONS AND CLINICAL RELEVANCE: This study shows that intramuscular posology produces plasma concentrations considered therapeutic for other species. However, meloxicam was not detected in plasma after oral administration. These results suggest that meloxicam administered intramuscularly may be a useful non-steroid anti-inflammatory drug in nursehound sharks. Further pharmacodynamic studies are needed to fully evaluate its clinical use in this species.


Asunto(s)
Tiburones , Tiazinas , Femenino , Masculino , Animales , Meloxicam , Estudios Prospectivos , Tiazoles , Semivida , Antiinflamatorios no Esteroideos/farmacocinética , Área Bajo la Curva , Administración Oral
19.
J Helminthol ; 98: e28, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516701

RESUMEN

A new species of trematode of anaporrhutine gorgoderid, from the gill chambers of the Munda round ray Urotrygon munda in Costa Rica is described, based on an integrative taxonomic approach that includes the use of light and scanning electron microscopy, ITS2 and 28S rDNA sequencing, and phylogenetic analysis. Anaporrhutum mundae sp. nov. can be distinguished from congeneric species by a combination of morphological traits and particularly by having the genital pore opening at the level of the intestinal bifurcation. The new species also can be distinguished from all other species of Anaporrhutum, except A. euzeti Curran, Blend & Overstreet, 2003, by having fewer testicular follicles per testis. Anaporrhutum mundae sp. nov. also differs from A. euzeti in its forebody shape and by having different morphology and location of the vitellaria. The study of the tegumental surface of A. mundae sp. nov., as revealed by scanning electron microscopy, allowed detection of new morphological characters for a member of Anaporrhutinae that may be of taxonomic value. These are: a stylet cavity dorsal to the oral sucker with a large penetration gland opening on each side of the cavity and small penetration gland openings located ventral to the stylet cavity, arranged in a circle around the mouth. This represents the first record of an Anaporrhutum species from Costa Rica. Further, A. mundae sp. nov. represents the first parasite described or reported in this host.


Asunto(s)
Parásitos , Trematodos , Infecciones por Trematodos , Masculino , Animales , Infecciones por Trematodos/parasitología , Filogenia , Costa Rica
20.
J Aquat Anim Health ; 36(3): 239-249, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38643364

RESUMEN

OBJECTIVE: The use of computed tomography (CT) in aquarium animals, including elasmobranchs, has increased dramatically. To take advantage of CT, contrast medium is used to enhance internal organs and provide contrast since elasmobranchs lack visceral fat. In this study, the contrast effects of iopamidol were examined for up to 260 days after intravenous administration to establish the time course of the CT values for the target organs in eight mature Cloudy Catsharks Scyliorhinus torazame. METHODS: A micro-CT system was used to measure the CT values of the designated region of interest in the target organs (ventricular cavity, kidneys, liver, gallbladder, ovarian follicles, uterine horn cavity) over time and the eggs laid, following administration of iopamidol (700 mg of iodine/kg). RESULT: The CT values of the ventricular cavity and kidneys peaked at 30 min and showed low values after day 22. The CT values for the liver increased over time and peaked at day 200, whereas values for the gallbladder and ovarian follicles peaked on day 6, with the gallbladder showing a low value and the ovarian follicles still showing a high value on day 260. Computed tomography images with identifiable enhancement within bilateral uterine horns were followed from days 1 to 35. The mean and maximum CT values of yolk and jelly in eggs laid after day 30 were significantly higher than the values for eggs laid up to day 29; embryonic development was confirmed in 88.7% of the eggs. CONCLUSION: There was no mortality or morbidity of the sharks during the experiment, indicating that the administration of iopamidol at 700 mg of iodine/kg did not result in any adverse effects for 260 days. This is the first study to describe the long-term contrast effects of iopamidol, thus contributing new information about the application of contrast studies in Cloudy Catsharks.


Asunto(s)
Medios de Contraste , Yopamidol , Tiburones , Animales , Medios de Contraste/administración & dosificación , Femenino , Yopamidol/administración & dosificación , Tomografía Computarizada por Rayos X/veterinaria , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda