Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 173(1): 166-180.e14, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502969

RESUMEN

Brain-wide fluctuations in local field potential oscillations reflect emergent network-level signals that mediate behavior. Cracking the code whereby these oscillations coordinate in time and space (spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into how the brain signals emotional pathology. Using machine learning, we discover a spatiotemporal dynamic network that predicts the emergence of major depressive disorder (MDD)-related behavioral dysfunction in mice subjected to chronic social defeat stress. Activity patterns in this network originate in prefrontal cortex and ventral striatum, relay through amygdala and ventral tegmental area, and converge in ventral hippocampus. This network is increased by acute threat, and it is also enhanced in three independent models of MDD vulnerability. Finally, we demonstrate that this vulnerability network is biologically distinct from the networks that encode dysfunction after stress. Thus, these findings reveal a convergent mechanism through which MDD vulnerability is mediated in the brain.


Asunto(s)
Encéfalo/fisiología , Depresión/patología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrodos Implantados , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Ketamina/farmacología , Aprendizaje Automático , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenómenos Fisiológicos/efectos de los fármacos , Corteza Prefrontal/fisiología , Estrés Psicológico
2.
Proc Natl Acad Sci U S A ; 121(1): e2316054120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147548

RESUMEN

The sluggish electron transfer kinetics in electrode polarization driven oxygen evolution reaction (OER) result in big energy barriers of water electrolysis. Accelerating the electron transfer at the electrolyte/catalytic layer/catalyst bulk interfaces is an efficient way to improve electricity-to-hydrogen efficiency. Herein, the electron transfer at the Sr3Fe2O7@SrFeOOH bulk/catalytic layer interface is accelerated by heating to eliminate charge disproportionation from Fe4+ to Fe3+ and Fe5+ in Sr3Fe2O7, a physical effect to thermally stabilize high-spin Fe4+ (t2g3eg1), providing available orbitals as electron transfer channels without pairing energy. As a result of thermal-induced changes in electronic states via thermal comproportionation, a sudden increase in OER performances was achieved as heating to completely suppress charge disproportionation, breaking a linear Arrhenius relationship. The strategy of regulating electronic states by thermal field opens a broad avenue to overcome the electron transfer barriers in water splitting.

3.
Proc Natl Acad Sci U S A ; 120(47): e2207825120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956288

RESUMEN

Electricity system decarbonization is key for environmental sustainability. From a consumption-production perspective, much attention has been paid to changes in how electricity is generated and used, but electricity systems also rely on a grid infrastructure that connects and integrates production and consumption, and which will also need to transform. At the same time, new technologies in the electricity system, including the grid, offer the potential for more socially sustainable ways of producing and consuming energy. However, in practice, change has been slow, uneven, and often dysfunctional. A socio-technical transitions approach offers insights into why this is so, seeing electricity system change not simply in technical and economic terms, but also as the outcomes of interactions between technology and social and political processes. The approach draws attention to the particular challenges of achieving rapid transitions in complex critical infrastructures like electricity with strong institutional logics of security. This article applies this approach to the case of Great Britain, where despite strong commitments to sustainability in the form of high-level climate policy, the electricity grid has often been a constraint on the pace of change. The nature of the British transition is explained partly by weak links between these high-level goals on the one hand and the detailed rules and practices in the electricity system on the other. It is also explained by patterns of ownership and grid regulation in the British case that protect incumbents and make it difficult for new actors to develop the system in more socially sustainable directions.

4.
Proc Natl Acad Sci U S A ; 120(28): e2300395120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410866

RESUMEN

The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region's interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Estados Unidos , Humanos , Contaminantes Atmosféricos/análisis , Sequías , Contaminación del Aire/análisis , Combustibles Fósiles , Electricidad
5.
Proc Natl Acad Sci U S A ; 120(47): e2206235120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956276

RESUMEN

The paper explores three periods in the UK electricity consumption-production system since World War II. The first two involved the development of an increasingly centralized, integrated system that provided electricity to meet growing post-war demand. It saw two major changes in governance, first to nationalization, then to privatization and liberalization. The third period started at the turn of the Century, driven by increasing evidence of the impact of fossil fuels on the Earth's climate. The paper focuses on the drivers of change, within the UK and externally, and how they affected governance, technology deployment, and industry structure. It draws on the multi-level perspective and the concepts of governance and technological branching points to inform the analysis of each period. It shows that there is a considerable distance to travel toward a truly sustainable electricity system.

6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165182

RESUMEN

Marginal emissions of CO2 from the electricity sector are critical for evaluating climate policies that rely on shifts in electricity demand or supply. This paper provides estimates of marginal CO2 emissions from US electricity generation using the most recently available and comprehensive data. The estimates vary by region, hour of the day, and year to year over the last decade. We identify an important and somewhat counterintuitive finding: While average emissions have decreased substantially over the last decade (28% nationally), marginal emissions have increased (7% nationally). We show that underlying these trends is primarily a shift toward greater reliance on coal to satisfy marginal electricity use. We apply our estimates to an analysis of the Biden administration's target of having electric vehicles (EVs) make up 50% of new vehicle purchases by 2030. We find that, without significant and concurrent changes to the electricity sector, the increase in electricity emissions is likely to offset more than half of the emission reductions from having fewer gasoline-powered vehicles on the road. Moreover, using average rather than marginal emissions to predict the impacts significantly overestimates the emission benefits. Overall, we find that the promise of EVs for reducing emissions depends, to a large degree, on complementary policies that decarbonize both average and marginal emissions in the electricity sector.

7.
Proc Natl Acad Sci U S A ; 119(52): e2205429119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538483

RESUMEN

Given the dire consequences of climate change and the war in Ukraine, decarbonization of electrical power systems around the world must be accomplished, while avoiding recurring blackouts. A good understanding of performance and reliability of different power sources underpins this endeavor. As an energy transition involves different societal sectors, we must adopt a simple and efficient way of communicating the transition's key indicators. Capacity factor (CF) is a direct measure of the efficacy of a power generation system and of the costs of power produced. Since the year 2000, the explosive expansion of solar PV and wind power made their CFs more reliable. Knowing the long-time average CFs of different electricity sources allows one to calculate directly the nominal capacity required to replace the current fossil fuel mix for electricity generation or expansion to meet future demand. CFs are straightforwardly calculated, but they are rooted in real performance, not in modeling or wishful thinking. Based on the current average CFs, replacing 1 W of fossil electricity generation capacity requires installation of 4 W solar PV or 2 W of wind power. An expansion of the current energy mix requires installing 8.8 W of solar PV or 4.3 W of wind power.


Asunto(s)
Humanos , Reproducibilidad de los Resultados , Viento , Combustibles Fósiles , Electricidad , Energía Renovable
8.
Small ; 20(33): e2400906, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593313

RESUMEN

Marangoni actuators that are propelled by surface tension gradients hold significant potential in small-scale swimming robots. Nevertheless, the release of "fuel" for conventional chemical Marangoni actuators is not easily controllable, and the single swimming function also limits application areas. Constructing controllable Marangoni robots with multifunctions is still a huge challenge. Herein, inspired by water striders, electricity-driven strategies are proposed for a multifunctional swimming Marangoni robot (MSMR), which is fabricated by super-aligned carbon nanotube (SACNT) and polyimide (PI) composite. The MSMR consists of a Marangoni actuator and air-ambient actuators. Owing to the temperature gradient generated by the electrical stimulation on the water surface, the Marangoni actuators can swim controllably with linear, turning, and rotary motions, mimicking the walking motion of water striders. In addition, the Marangoni actuators can also be driven by light. Importantly, the air-ambient actuators fabricated by SACNT/PI bilayer structures demonstrate the function of grasping objects on the water surface when electrically Joule-heated, mimicking the predation behavior of water striders. With the synergistic effect of the Marangoni actuator and air-ambient actuators, the MSMR can navigate mazes with tunnels and grasp objects. This research will provide a new inspiration for smart actuators and swimming robots.

9.
Small ; : e2400961, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534173

RESUMEN

Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.

10.
Small ; 20(16): e2307786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38161248

RESUMEN

To date, transforming environmental energy into electricity through a non-mechanical way is challenging. Herein, a series of photomechaelectric (PME) polyurethanes containing azobenzene-based photoisomer units and ionic liquid-based dipole units are synthesized, and corresponding PME nanogenerators (PME-NGs) to harvest electricity are fabricated. The dependence of the output performance of PME-NGs on the structure of the polyurethane is evaluated. The results show that the UV light energy can directly transduce into alternating-current (AC) electricity by PME-NGs via a non-mechanical way. The optimal open-circuit voltage and short-circuit current of PME-NGs under UV illumination reach 17.4 V and 696 µA, respectively. After rectification, the AC electricity can be further transformed into direct-current (DC) electricity and stored in a capacitor to serve as a power system to actuate typical microelectronics. The output performance of PME-NGs is closely related to the hard segment content of the PME polyurethane and the radius of counter anions in the dipole units. Kelvin probe force microscopy is used to confirm the existence of the PME effect and the detailed mechanism about the generation of AC electricity in PME-NGs is proposed, referring to the back and forth drift of induced electrons on the two electrodes in contact with the PME polyurethanes.

11.
Small ; : e2402765, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940416

RESUMEN

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

12.
Chem Rec ; 24(1): e202300227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37650319

RESUMEN

MFC can have dual functions; they can generate electricity from industrial and domestic effluents while purifying wastewater. Most MFC designs comprise a membrane which physically separates the cathode and anode compartments while keeping them electrically connected, playing a significant role in its efficiency. Popular commercial membranes such as Nafion, Hyflon and Zifron have excellent ionic conductivity, but have several drawbacks, mainly their prohibitive cost and non-biodegradability, preventing the large-scale application of MFC. Fabrication of composite materials that can function better at a much lower cost while also being environment-friendly has been the endeavor of few researchers over the past years. The current review aims to apprise readers of the latest trends of the past decade in fabricating composite membranes (CM) for MFC. For emphasis on environmental-friendly CM, the review begins with biopolymers, moving on to the carbon-polymer, polymer-polymer, and metal-polymer CM. Lastly, critical analysis towards technology-oriented propositions and realistic future directives in terms of strengths, weakness, opportunities, challenges (SWOC analysis) of the application of CM in MFC have been discussed for their possible large-scale use. The focus of this review is the development of hybrid materials as membranes for fuel cells, while underscoring the need for environment-friendly composites and processes.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Aguas Residuales , Polímeros , Conductividad Eléctrica
13.
Environ Sci Technol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007544

RESUMEN

A stylized macro-scale energy model of least-cost electricity systems relying only on wind and solar generation was used to assess the value of different storage technologies, individually and combined, for the contiguous U.S. as well as for four geographically diverse U.S. load-balancing regions. For the contiguous U.S. system, at current costs, when only one storage technology was deployed, hydrogen energy storage produced the lowest system costs, due to its energy-capacity costs being the lowest of all storage technologies modeled. Additional hypothetical storage technologies were more cost-competitive than hydrogen (long-duration storage) only at very low energy-capacity costs, but they were more cost-competitive than Li-ion batteries (short-duration storage) at relatively high energy- and power-capacity costs. In all load-balancing regions investigated, the least-cost systems that included long-duration storage had sufficient energy and power capacity to also meet short-duration energy and power storage needs, so that the addition of short-duration storage as a second storage technology did not markedly reduce total system costs. Thus, in electricity systems that rely on wind and solar generation, contingent on social and geographic constraints, long-duration storage may cost-effectively provide the services that would otherwise be provided by shorter-duration storage technologies.

14.
Environ Sci Technol ; 58(1): 33-42, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109378

RESUMEN

Electrifying freight trucks will be key to alleviating air pollution burdens on disadvantaged communities and mitigating climate change. The United States plans to pursue this aim by adding vehicle charging infrastructure along specific freight corridors. This study explores the coevolution of the electricity grid and freight trucking landscape using an integrated assessment framework to identify when each interstate and drayage corridor becomes advantageous to electrify from a climate and human health standpoint. Nearly all corridors achieve greenhouse gas emission reductions if electrified now. Most can reduce health impacts from air pollution if electrified by 2040 although some corridors in the Midwest, South, and Mid-Atlantic regions remain unfavorable to electrify from a human health standpoint, absent policy support. Recent policy, namely, the Inflation Reduction Act, accelerates this timeline to 2030 for most corridors and results in net human health benefits on all corridors by 2050, suggesting that near-term investments in truck electrification, particularly drayage corridors, can meaningfully reduce climate and health burdens.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Estados Unidos , Humanos , Emisiones de Vehículos/análisis , Vehículos a Motor , Contaminación del Aire/análisis , Electricidad , Contaminantes Atmosféricos/análisis
15.
Environ Sci Technol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171721

RESUMEN

Although Africa contributes less than 5% to global greenhouse gas (GHG) emissions, its role in global climate action is pivotal. To date, 53 African countries have submitted their Nationally Determined Contributions (NDCs), and four have committed to a net-zero target. However, many of Africa's NDCs are vaguely expressed and without specific focus on explicit sectoral decarbonization targets. Furthermore, Africa's huge land-based carbon dioxide removal (CDR) potential remains unclear in the context of enabling net-zero emissions within the continent. This study achieves two objectives: Under a NZ GHG emission trajectory in Africa, we uncover the implications of a targeted zero-emission electricity sector by 2030, on the energy landscape and other sustainability factors. This study also features the role of land-based biological removal methods─bioenergy carbon capture and storage (BECCS) and afforestation/reforestation (A/R)─in net zero actualization in Africa. Our results reveal a unified but disparate actualisation of the mid-century net zero emission goal across the continent, as all regions except North Africa achieve carbon neutrality. The industrial sector faces significant difficulties in transitioning and contributes substantially to positive emissions on the continent, with its share of total residual emissions reaching 49-64% by 2050. This difficulty persists even with targeted sectoral decarbonization of the electricity sector, although it is significantly reduced by the availability of BECCS as a CDR option. Under thezero-emission electricity pathway, emissions in buildings and transport sectors are reduced due to rapid electrification. A trade-off emerges in the net zero pathway concerning land allocation for negative emissions versus other land use activities. A key result shows that achieving a net zero target in Africa leads to a cumulative loss of $102 billion in fossil fuel infrastructure within the electricity sector by mid-century, which doubles when the zero-emission electricity goal is achieved.

16.
Environ Sci Technol ; 58(26): 11247-11255, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904766

RESUMEN

Companies are increasingly relying on emission reductions attributable to their adoption of renewable electricity to achieve net-zero emission targets. However, there is a risk of double counting of emission reductions threatening the credibility of corporate climate actions due to defective accounting rules of GHG emissions related to electricity consumption and the overlap between different market-based instruments, including carbon credit markets, renewable power purchase agreements, and renewable energy certificates. Using data of 63 major Chinese companies in seven sectors, we quantitatively assess the risks of double counting related to corporate sourcing of renewables and their consequent influences on the alignment of corporate emission trajectories with the 1.5 °C goal of the Paris Agreement. Results show that 7.1% of the electricity consumed by sample companies in 2021 was from renewable energy procurement and deployment, with which they reported 8.27 Mt of CO2e emission reductions compared to the scenario with no renewable electricity consumption. However, emission reductions that could be double counted are predicted to be 0.9-1.3 times as many as emission reductions that companies will report during 2021-2030. After adjustment of the reported emissions that might be underestimated due to double counting, the overall emission trajectories of sample companies are no longer aligned with the 1.5 °C goal. Our findings suggest that it is urgently needed to improve the corporate carbon accounting rules and increase the transparency of corporate carbon disclosures.


Asunto(s)
Gases de Efecto Invernadero , Electricidad , Energía Renovable
17.
Environ Sci Technol ; 58(12): 5299-5309, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38380838

RESUMEN

Recent investments in "clean" hydrogen as an alternative to fossil fuels are driven by anticipated climate benefits. However, most climate benefit calculations do not adequately account for all climate warming emissions and impacts over time. This study reanalyzes a previously published life cycle assessment as an illustrative example to show how the climate impacts of hydrogen deployment can be far greater than expected when including the warming effects of hydrogen emissions, observed methane emission intensities, and near-term time scales; this reduces the perceived climate benefits upon replacement of fossil fuel technologies. For example, for blue (natural gas with carbon capture) hydrogen pathways, the inclusion of upper-end hydrogen and methane emissions can yield an increase in warming in the near term by up to 50%, whereas lower-end emissions decrease warming impacts by at least 70%. For green (renewable-based electrolysis) hydrogen pathways, upper-end hydrogen emissions can reduce climate benefits in the near term by up to 25%. We also consider renewable electricity availability for green hydrogen and show that if it is not additional to what is needed to decarbonize the electric grid, there may be more warming than that seen with fossil fuel alternatives over all time scales. Assessments of hydrogen's climate impacts should include the aforementioned factors if hydrogen is to be an effective decarbonization tool.


Asunto(s)
Hidrógeno , Metano , Clima , Gas Natural , Dióxido de Carbono
18.
Environ Sci Technol ; 58(16): 6964-6977, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602491

RESUMEN

The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.


Asunto(s)
Amoníaco , Energía Renovable , Fertilizantes , Electricidad , Viento
19.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34408019

RESUMEN

Understanding how populations' daily behaviors change during the COVID-19 pandemic is critical to evaluating and adapting public health interventions. Here, we use residential electricity-consumption data to unravel behavioral changes within peoples' homes in this period. Based on smart energy-meter data from 10,246 households in Singapore, we find strong positive correlations between the progression of the pandemic in the city-state and the residential electricity consumption. In particular, we find that the daily new COVID-19 cases constitute the most dominant influencing factor on the electricity demand in the early stages of the pandemic, before a lockdown. However, this influence wanes once the lockdown is implemented, signifying that residents have settled into their new lifestyles under lockdown. These observations point to a proactive response from Singaporean residents-who increasingly stayed in or performed more activities at home during the evenings, despite there being no government mandates-a finding that surprisingly extends across all demographics. Overall, our study enables policymakers to close the loop by utilizing residential electricity usage as a measure of community response during unprecedented and disruptive events, such as a pandemic.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , Conducta Cooperativa , Equipos y Suministros Eléctricos/estadística & datos numéricos , Electricidad , Cuarentena , COVID-19/transmisión , Composición Familiar , Humanos , Salud Pública , SARS-CoV-2/aislamiento & purificación , Singapur/epidemiología
20.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495332

RESUMEN

We examine the health implications of electricity generation from the 2018 stock of coal-fired power plants in India, as well as the health impacts of the expansion in coal-fired generation capacity expected to occur by 2030. We estimate emissions of SO2, NOX, and particulate matter 2.5 µm (PM2.5) for each plant and use a chemical transport model to estimate the impact of power plant emissions on ambient PM2.5 Concentration-response functions from the 2019 Global Burden of Disease (GBD) are used to project the impacts of changes in PM2.5 on mortality. Current plus planned plants will contribute, on average, 13% of ambient PM2.5 in India. This reflects large absolute contributions to PM2.5 in central India and parts of the Indo-Gangetic plain (up to 20 µg/m3). In the south of India, coal-fired power plants account for 20-25% of ambient PM2.5 We estimate 112,000 deaths are attributable annually to current plus planned coal-fired power plants. Not building planned plants would avoid at least 844,000 premature deaths over the life of these plants. Imposing a tax on electricity that reflects these local health benefits would incentivize the adoption of renewable energy.


Asunto(s)
Carbón Mineral , Centrales Eléctricas , Geografía , India/epidemiología , Mortalidad , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda