Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542333

RESUMEN

DNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass. Mono-or poly-ubiquitination of PCNA facilitates an error-prone or an error-free bypass mechanism, respectively. In contrast, SUMOylation recruits the Srs2 helicase, which prevents local homologous recombination. The Elg1 RFC-like complex plays an important role in unloading PCNA from the chromatin. We analyze the interaction of mutations that destabilize PCNA with mutations in the Elg1 clamp unloader and the Srs2 helicase. Our results suggest that, in addition to its role as a coordinator of bypass mechanisms, the very presence of PCNA on the chromatin prevents homologous recombination, even in the absence of the Srs2 helicase. Thus, PCNA unloading seems to be a pre-requisite for recombinational repair.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Recombinación Homóloga , Replicación del ADN , ADN/genética , ADN/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Portadoras/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(9): E2030-E2039, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440488

RESUMEN

In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Replicación del ADN , Eliminación de Gen , Silenciador del Gen , Genoma Fúngico , Histonas/metabolismo , Sistemas de Lectura Abierta , Plásmidos/metabolismo , Ribonucleasas/metabolismo , Fase S , Transcripción Genética
3.
Curr Genet ; 66(5): 911-915, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32394094

RESUMEN

DNA polymerases sometimes stall during DNA replication at sites where DNA is damaged, or upon encounter with proteins or secondary structures of DNA. When that happens, the polymerase clamp PCNA can become modified with a single ubiquitin moiety at lysine 164, opening DNA Damage Tolerance (DDT) mechanisms that either repair or bypass the lesions. An alternative repair mechanism is the salvage recombination (SR) pathway, which copies information from the sister chromatid. SUMOylation of PCNA at the same lysine, or at lysine 127, can recruit the Srs2 helicase, which negatively controls SR. Recently, we have dissected the relationship between SR and the DDT pathways, and showed that overexpression of either the PCNA unloader Elg1, or the Rad52 homologous recombination protein, can bypass the repression by Srs2. Our results shed light on the interactions between different DNA damage repair/bypass proteins, and underscore the importance of PCNA modifications in organizing the complex task of dealing with DNA damage during replication of the genetic material.


Asunto(s)
Replicación del ADN , ADN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , ADN de Hongos/metabolismo , Recombinación Homóloga , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Sumoilación
4.
Proc Natl Acad Sci U S A ; 112(22): 7021-6, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25986377

RESUMEN

Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures-processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Análisis de Varianza , Procesamiento de Imagen Asistido por Computador , Microscopía , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/metabolismo , Cohesinas
5.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27664980

RESUMEN

Each time a cell duplicates, the whole genome must be accurately copied and distributed. The enormous amount of DNA in eukaryotic cells requires a high level of coordination between polymerases and other DNA and chromatin-interacting proteins to ensure timely and accurate DNA replication and chromatin formation. PCNA forms a ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and as a landing platform for different proteins that interact with DNA and chromatin. It thus serves as a signaling hub and influences the rate and accuracy of DNA replication, the r-formation of chromatin in the wake of the moving fork and the proper segregation of the sister chromatids. Four different, conserved, protein complexes are in charge of loading/unloading PCNA and similar molecules onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA, the replication clamp, during S-phase. The Rad24, Ctf18 and Elg1 proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast.


Asunto(s)
Ciclo Celular , Replicación del ADN , ADN/metabolismo , Complejos Multienzimáticos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica
6.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36370456

RESUMEN

Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Segregación Cromosómica , ADN/metabolismo , Cohesinas
7.
mBio ; 13(4): e0142022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35708277

RESUMEN

During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Ciclinas/genética , ADN Helicasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
8.
Genes (Basel) ; 12(11)2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34828416

RESUMEN

During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.


Asunto(s)
Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Daño del ADN , Replicación del ADN , Heterocromatina/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/genética
9.
mBio ; 11(3)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371600

RESUMEN

During DNA replication, stalling can occur when the replicative DNA polymerases encounter lesions or hard-to replicate regions. Under these circumstances, the processivity factor PCNA gets ubiquitylated at lysine 164, inducing the DNA damage tolerance (DDT) mechanisms that can bypass lesions encountered during DNA replication. PCNA can also be SUMOylated at the same residue or at lysine 127. Surprisingly, pol30-K164R mutants display a higher degree of sensitivity to DNA-damaging agents than pol30-KK127,164RR strains, unable to modify any of the lysines. Here, we show that in addition to translesion synthesis and strand-transfer DDT mechanisms, an alternative repair mechanism ("salvage recombination") that copies information from the sister chromatid is repressed by the recruitment of Srs2 to SUMOylated PCNA. Overexpression of Elg1, the PCNA unloader, or of the recombination protein Rad52 allows its activation. We dissect the genetic requirements for this pathway, as well as the interactions between Srs2 and Elg1.IMPORTANCE PCNA, the ring that encircles DNA maintaining the processivity of DNA polymerases, is modified by ubiquitin and SUMO. Whereas ubiquitin is required for bypassing lesions through the DNA damage tolerance (DDT) pathways, we show here that SUMOylation represses another pathway, salvage recombination. The Srs2 helicase is recruited to SUMOylated PCNA and prevents the salvage pathway from acting. The pathway can be induced by overexpressing the PCNA unloader Elg1, or the homologous recombination protein Rad52. Our results underscore the role of PCNA modifications in controlling the various bypass and DNA repair mechanisms.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Daño del ADN , ADN Helicasas/genética , Replicación del ADN , Recombinación Homóloga , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
10.
Cell Cycle ; 19(19): 2436-2450, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32926661

RESUMEN

Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.


Asunto(s)
Cromátides , Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos , Replicación del ADN , ADN de Hongos/biosíntesis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
11.
Elife ; 82019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31149897

RESUMEN

Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN de Hongos/metabolismo , Fluorescencia , Modelos Biológicos , Mutación/genética , Fase S
12.
Genes (Basel) ; 8(2)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28134787

RESUMEN

During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

13.
Cell Cycle ; 12(16): 2570-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23907118

RESUMEN

Maintaining genome stability is crucial for all cells. The budding yeast Elg1 protein, the major subunit of a replication factor C-like complex, is important for genome stability, since cells lacking Elg1 exhibit increased recombination and chromosomal rearrangements. This genome maintenance function of Elg1 seems to be conserved in higher eukaryotes, since removal of the human Elg1 homolog, encoded by the ATAD5 gene, also causes genome instability leading to tumorigenesis. The fundamental molecular function of the Elg1/ATAD5-replication factor C-like complex (RLC) was, until recently, elusive, although Elg1/ATAD5-RLC was known to interact with the replication sliding clamp PCNA. Two papers have now reported that following DNA replication, the Elg1/ATAD5-RLC is required to remove PCNA from chromatin in yeast and human cells. In this Review, we summarize the evidence that Elg1/ATAD5-RLC acts as a PCNA unloader and discuss the still enigmatic relationship between the function of Elg1/ATAD5-RLC in PCNA unloading and the role of Elg1/ATAD5 in maintaining genomic stability.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica/fisiología , Modelos Genéticos , Complejos Multiproteicos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Datos de Secuencia Molecular , Saccharomycetales
14.
Cell Cycle ; 12(10): 1625-36, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23624835

RESUMEN

Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian Elg1 protein has been recently found to interact with the FA complex. Here we analyze the genetic interactions between elg1Δ and mutants of the yeast FA-like pathway. We show that Elg1 physically contacts the Mhf1/Mhf2 histone-like complex and genetically interacts with MPH1 (ortholog of the FANCM helicase) and CHL1 (ortholog of the FANCJ helicase) genes. We analyze the sensitivity of double, triple, quadruple and quintuple mutants to methylmethane sulfonate (MMS) and to hydroxyurea (HU). Our results show that genetic interactions depend on the type of DNA damaging agent used and show a hierarchy: Chl1 and Elg1 play major roles in the survival to these genotoxins and exhibit synthetic fitness reduction. Mph1 plays a lesser role, and the effect of the Mhf1/2 complex is seen only in the absence of Elg1 on HU-containing medium. Finally, we dissect the relationship between yeast FA-like mutants and the replication clamp, PCNA. Our results point to an intricate network of interactions rather than a single, linear repair pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Daño del ADN/efectos de los fármacos , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Humanos , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda