RESUMEN
OBJECTIVE: To investigate the impact of p38 mitogen-activated protein kinase (MAPK) signaling on reactivating visual cortical plasticity in adult amblyopic mice. MATERIALS AND METHODS: Reverse suture (RS), environment enrichment (EE), and combined with left intracerebroventricular injection of p38 MAPK inhibitor (SB203580, SB) or p38 MAPK agonist (dehydrocorydaline hydrochloride, DHC) were utilized to treat adult amblyopic mice with monocular deprivation (MD). The visual water task, visual cliff test, and Flash visual-evoked potential were used to measure the visual function. Then, Golgi staining and transmission electron microscopy were used to assess the reactivation of structural plasticity in adult amblyopic mice. Western blot and immunohistochemistry detected the expression of ATF2, PSD-95, p38 MAPK, and phospho-p38 MAPK in the left visual cortex. RESULTS: No statistically significant difference was observed in the visual function in each pre-intervention group. Compared to pre-intervention, the visual acuity of deprived eyes was improved significantly, the impairment of visual depth perception was alleviated, and the P wave amplitude and C/I ratio were increased in the EE + RS, the EE + RS + SB, and the EE + RS + DMSO groups, but no significant difference was detected in the EE + RS + DHC group. Compared to EE + RS + DHC group, the density of dendritic spines was significantly higher, the synaptic density of the left visual cortex increased significantly, the length of the active synaptic zone increased, and the thickness of post-synaptic density (PSD) thickened in the left visual cortex of EE + RS, EE + RS + SB, and EE + RS + DMSO groups. And that, the protein expression of p-p38 MAPK increased while that of PSD-95 and ATF2 decreased significantly in the left visual cortex of the EE + RS + DHC group mice. CONCLUSION: RS and EE intervention improved the visual function and synaptic plasticity of the visual cortex in adult amblyopic mice. However, activating p38 MAPK hinders the recovery of visual function by upregulating the phosphorylation of p38 MAPK and decreasing the ATF2 protein expression.
Asunto(s)
Ambliopía , Corteza Visual , Ratones , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Dimetilsulfóxido , Visión OcularRESUMEN
Enrichment of milking environment through music has been proposed to help animals to cope with divergent stressors. In sight of the above, a study was conducted to evaluate the effect of Indian instrumental music-based environmental enrichment played in yaman raga on milk production performance and behaviour in cattle. A total of 21 lactating dairy cattle (Vrindavani crossbred cows) having similar parity and stage of lactation were selected in three groups - T1, T2 and T3, each consisting of seven animals. The T1 and T2 groups were exposed to instrumental flute and sitar, respectively, 10 min prior to the start of milking and continued till completion of milking; while the T3 group served as control. Musical enrichment of the environment was done using recorded-tape of flute and sitar was played in yamen raga at 40-60 (dB) decibel intensity. The results revealed a non-significant difference in milk yield, rectal temperature, respiration rate, T3 (triiodothyronine) and T4 (thyroxine) hormones. However, there exhibited a significant (p < 0.05) difference in milking time, milking speed, cortisol hormones and behavioural parameters such as milk let-down in the animals exposed to music compared to the control group. Thus, the results have significant implications relating to the behavioural fitness and welfare of dairy animals and reducing residual milk.
Asunto(s)
Leche , Música , Animales , Bovinos , Industria Lechera/métodos , Femenino , Hidrocortisona , Lactancia , EmbarazoRESUMEN
Aging results in the progressive decline of muscle strength. Interventions to maintain muscle strength may mitigate the age-related loss of physical function, thus maximizing health span. The work on environmental enrichment (EE), an experimental paradigm recapitulating aspects of an active lifestyle, has revealed EE-induced metabolic benefits mediated by a brain-fat axis across the lifespan of mice. EE initiated at 18-month of age shows a trend toward an increased mean lifespan. While previous work described EE's influences on the aging dynamics of several central-peripheral processes, its influence on muscle remained understudied. Here, the impact of EE is investigated on motor function, neuromuscular physiology, and the skeletal muscle transcriptome. EE is initiated in 20-month-old mice for a five-month period. EE mice exhibit greater relative lean mass that is associated with improved mobility and hindlimb grip strength. Transcriptomic profiling of muscle tissue reveals an EE-associated enrichment of gene expression within several metabolic pathways related to oxidative phosphorylation and the TCA cycle. Many mitochondrial-related genes-several of which participate in the electron transport chain-are upregulated. Stress-responsive signaling pathways are downregulated because of EE. The results suggest that EE improves motor function-possibly through preservation of mitochondrial function-even late in life.
Asunto(s)
Ambiente , Transcriptoma , Ratones , Animales , Encéfalo , Perfilación de la Expresión Génica , Músculo EsqueléticoRESUMEN
Maternal separation is a detrimental postnatal influence, whereas environmental enrichment is a therapeutic and protective agent. It is unclear if long-term environmental enrichment can compensate for the effects of maternal separation stress on memory-related alterations. This study examined how environmental enrichment affected memory functions, anxiety level, Grin2a, Grin2b, BDNF, and cFos expressions in the maternally separated rats. There are seven groups in this study: control (C), maternal separation+standard cage (MS), maternal separation + enriched cage (MSE), enriched cage (E), the maternal separation that decapitated at postnatal 21 (MS21) and standard cage that decapitated at PN21 (C21) for hormone and gene expression analysis. The maternal separation procedure consisted of postnatal 21 days. Learning and memory performance were determined with the Morris water tank test; anxiety and locomotor activity were examined with the open field and elevated plus-maze test. The expression levels of genes were measured by the RT-PCR method. Blood corticosterone level was evaluated by the ELISA method. Results showed that MS increased memory performance, locomotor activity, and anxiety, but it did not change gene expression levels. An enriched environment did not change the memory performance, locomotor activity, and related gene expression levels. MSE group increased their memory performance, but the anxiety, locomotor activity, and gene expression level did not change. Grin2a, Grin2b, and BDNF gene expression and corticosterone levels increased in the MS21 group. Maternal separation increased memory performance, but it also increased anxiety. Environmental enrichment alone was insufficient to cause alterations in the memory performance.
Asunto(s)
Hipocampo , Privación Materna , Ratas , Animales , Masculino , Hipocampo/metabolismo , Ratas Wistar , Corticosterona , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Aprendizaje por Laberinto , AnsiedadRESUMEN
Environmental changes like vet visit could cause stress in cats. Studies have attempted to develop stress management strategies targeting sensory systems. Even though species-appropriate music which includes cat affiliative sound (e.g., cats' purring and suckling sound) has been shown to relieve stress in cats. Little is known whether the cat sound alone works in stress management. This study was conducted to investigate the effects of species-relevant auditory stimuli on stress in cats exposed to a novel environment. During the 28-day experiment periods, 20 cats received four types of sound treatments which included silence (T1), purr of cats (T2), eating sound in cats (T3), and the mixed sound of T2 and T3 (T4) in a novel environment in random orders with intervals of 1 week between treatments. Cats' behaviors were recorded during each 10-min test. Results showed that T4 reduced visual scanning (P = 0.017) without significantly affecting other behaviors, compared with other treatments. Together, the two types of cat-specific sounds did not exert pronounced effects of relieving stress on cats exposed to a novel environment.
RESUMEN
Parkinson's disease is the most common movement disorder, affecting about 1% of the population over the age of 60 years. Parkinson's disease is characterized clinically by resting tremor, bradykinesia, rigidity and postural instability, as a result of the progressive loss of nigrostriatal dopaminergic neurons. In addition to this neuronal cell loss, Parkinson's disease is characterized by the accumulation of intracellular protein aggregates, Lewy bodies and Lewy neurites, composed primarily of the protein α-synuclein. Although it was first described almost 200 years ago, there are no disease-modifying drugs to treat patients with Parkinson's disease. In addition to conventional therapies, non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders. Among such strategies, environmental enrichment, comprising physical exercise, cognitive stimulus, and social interactions, has been assessed in preclinical models of Parkinson's disease. Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression, enhancing the expression of neurotrophic factors and modulating neurotransmission. In this review article, we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson's disease, highlighting its influence on the dopaminergic, cholinergic, glutamatergic and GABAergic systems, as well as the involvement of neurotrophic factors. We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson's disease, highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
RESUMEN
AIMS: Postoperative cognitive dysfunction (POCD) is a common and significant syndrome. Our previous studies have shown that surgery reduces dendritic arborization and spine density and that environment enrichment (EE) reduces POCD. Neuroligin 1 is a postsynaptic protein involved in the formation of postsynaptic protein complex. This study was designed to determine the role of neuroligin 1 in the protection of EE against POCD and the mechanisms for EE to affect neuroligin 1 expression. METHODS: Eight-week-old C57BL/6J male mice with or without EE for 3, 7, or 14 days had right carotid artery exposure under isoflurane anesthesia. An anti-neuroligin 1 antibody at 1.5 µg/mouse was injected intracerebroventricularly at one and two weeks before the surgery. Mice were subjected to the Barnes maze and fear conditioning tests from one week after the surgery. Cerebral cortex and hippocampus were harvested after surgery. RESULTS: Mice with surgery had poorer performance in the Barnes maze and fear conditioning tests than control mice. EE for 2 weeks, but not EE for 3 or 7 days, improved the performance of surgery mice in these tests. Surgery reduced neuroligin 1 in the hippocampus. Preoperative EE for 2 weeks attenuated this reduction. The anti-neuroligin 1 antibody worsened the performance of mice with surgery plus EE in the Barnes maze and fear conditioning tests. Surgery increased histone deacetylase activity and decreased the acetylated histone in the hippocampus. EE attenuated these surgery effects. CONCLUSION: Our results suggest that preoperative EE for 2 weeks reduces POCD. This effect may be mediated by preserving neuroligin 1 expression via attenuating surgery-induced epigenetic dysregulation in the brain.
Asunto(s)
Moléculas de Adhesión Celular Neuronal , Isoflurano , Complicaciones Cognitivas Postoperatorias , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , Isoflurano/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Complicaciones Cognitivas Postoperatorias/prevención & controlRESUMEN
Life experiences, such as maternal deprivation (MD) and environment enrichment (EE), affect social behaviors in the adult. But, the underlying mechanism remains unclear. In the present study, we determined whether neonatal MD induces social deficits, whether postweaning EE restores the deficits, and their effects on neuron morphology and oxytocin (OT)-oxytocin receptor (OTR) system. We found that MD induced repetitive behavior and deficits in novel object recognition and sociability, and EE alleviated these deficits. MD decreased oxytocinergic neurons in the magnocellular hypothalamic paraventricular nucleus (mPVH), which was parallel to the increased OTR levels and dendritic branches of projection neurons in the basolateral amygdala (BLA). EE increased the OTR levels in the prelimbic cortex (PL) and the oxytocinergic neurons in the parvocellular PVH (vPVH), which were parallel to the increased dendritic branches of small pyramidal neurons in the PL and synaptic connections marked with synaptophysin and postsynaptic density protein 95 in the BLA and PL. Together, the results suggest that postweaning EE alleviates the social impairments induced by neonatal MD and OT-OTR system are experience-dependent and associated with social behaviors and neuron morphology.
Asunto(s)
Ambiente , Privación Materna , Neuronas , Receptores de Oxitocina , Conducta Social , Humanos , Recién Nacido , Neuronas/patología , Receptores de Oxitocina/fisiologíaRESUMEN
RATIONALE: During the last few decades, alcohol use disorders (AUD) have reached an epidemic prevalence, yet social influences on alcoholism have not been fully addressed. Several factors can modulate alcohol intake. On one hand, stress can reinforce ethanol-induced behaviors and be an important component in AUD and alcoholism. On the other hand, environmental enrichment (EE) has a neuroprotective role and prevents the development of excessive ethanol intake in rodents. However, studies showing the role of EE in chronic psychosocial stress-impaired ethanol-conditioned rewards are nonexistent. AIM: The purpose of the current study is to explore the potential protective role of EE on extinction and reinstatement of ethanol-conditioned place preference (EtOH-CPP) following chronic psychosocial stress. METHODS: In the first experiment and after the EtOH-CPP test, the mice were subjected to 15 days of chronic stress, then housed in a standard (SE) or enriched environment (EE) while EtOH-CPP extinction was achieved by repeated exposure to the CPP chambers without ethanol injection. In the second experiment and after the EtOH-CPP test, extinction was achieved as described above. Mice were then exposed to chronic stress for 2 weeks before being housed in a SE or EE. EtOH-CPP reinstatement was induced by a single exposure to the conditioning chambers. RESULTS: As expected, stress exposure increased anxiety-like behavior and reduced weight gain. More importantly, we found that EE significantly shortened chronic stress-delayed extinction and decreased the reinstatement of EtOH-CPP. CONCLUSION: These results support the hypothesis that EE reduces the impact of alcohol-associated environmental stimuli, and hence it may be a general intervention for reducing cue-elicited craving and relapse in humans.
Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Condicionamiento Psicológico/efectos de los fármacos , Ambiente , Etanol/administración & dosificación , Extinción Psicológica/efectos de los fármacos , Estrés Psicológico/psicología , Consumo de Bebidas Alcohólicas/terapia , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Refuerzo en Psicología , Recompensa , Estrés Psicológico/terapiaRESUMEN
BACKGROUND: Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer's disease (AD), while how to initiate early cognitive stimulation is unclear. Given that the immature brain is more sensitive to environmental stimuli and that brain dynamics decrease with ageing, we reasoned that it would be effective to initiate cognitive stimulation against AD as early as the fetal period. METHODS: After conception, maternal AD transgenic mice (3 × Tg AD) were exposed to gestational environment enrichment (GEE) until the day of delivery. The cognitive capacity of the offspring was assessed by the Morris water maze and contextual fear-conditioning tests when the offspring were raised in a standard environment to 7 months of age. Western blotting, immunohistochemistry, real-time PCR, immunoprecipitation, chromatin immunoprecipitation (ChIP) assay, electrophysiology, Golgi staining, activity assays and sandwich ELISA were employed to gain insight into the mechanisms underlying the beneficial effects of GEE on embryos and 7-10-month-old adult offspring. RESULTS: We found that GEE markedly preserved synaptic plasticity and memory capacity with amelioration of hallmark pathologies in 7-10-m-old AD offspring. The beneficial effects of GEE were accompanied by global histone hyperacetylation, including those at bdnf promoter-binding regions, with robust BDNF mRNA and protein expression in both embryo and progeny hippocampus. GEE increased insulin-like growth factor 1 (IGF1) and activated its receptor (IGF1R), which phosphorylates Ca2+/calmodulin-dependent kinase IV (CaMKIV) at tyrosine sites and triggers its nuclear translocation, subsequently upregulating histone acetyltransferase (HAT) and BDNF transcription. The upregulation of IGF1 mimicked the effects of GEE, while IGF1R or HAT inhibition during pregnancy abolished the GEE-induced CaMKIV-dependent histone hyperacetylation and BDNF upregulation. CONCLUSIONS: These findings suggest that activation of IGF1R/CaMKIV/HAT/BDNF signaling by gestational environment enrichment may serve as a promising strategy to delay AD progression.
RESUMEN
Current evidence suggests dementia and pathology in Alzheimer's Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple 'hits' on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition. Over 35 weeks, this induced classic signs of T2D (hyperglycemia and insulin dysfunction) and a modest, but stable deficit in spatial recognition memory, with very little long-term modification of proteins in or associated with IR/PI3K/Akt signalling in CA1 of the hippocampus. Intracerebroventricular infusion of soluble amyloid beta 42 (Aß42) to mimic the early preclinical rise in Aß alone induced a more severe, but short-lasting deficits in memory and deregulation of proteins. Infusion of Aß on the T2D phenotype exacerbated and prolonged the memory deficits over approximately 4 months, and induced more severe aberrant regulation of proteins associated with autophagy, inflammation and glucose uptake from the periphery. A mild form of environmental enrichment transiently rescued memory deficits and could reverse the regulation of some, but not all protein changes. Together, these data identify mechanisms by which T2D could create a modest dysfunctional neuronal milieu via multiple and parallel inputs that permits the development of pathological events identified in AD and memory deficits when Aß levels are transiently effective in the brain.
Asunto(s)
Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/etiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/administración & dosificación , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Conducta Alimentaria , Hipocampo/patología , Hipocampo/ultraestructura , Humanos , Insulina/sangre , Masculino , Memoria , Trastornos de la Memoria/complicaciones , Modelos Biológicos , Fosforilación , Ratas Sprague-Dawley , Factores de Riesgo , Estreptozocina , Aumento de PesoRESUMEN
The male germ line is capable of transmitting a legacy of stress exposure to the next generation of offspring. This transgenerational process manifests by altering offspring affective behaviours, cognition and metabolism. Paternal early life trauma causes hippocampal serotonergic dysregulation in male offspring. We previously showed a transgenerational modification to male offspring anxiety-like behaviours by treatment of adult male breeders with corticosterone (CORT) prior to mating. In the present study, we used offspring from our paternal CORT model and characterised offspring serotonergic function by examining their responses to the 5HT1AR agonist, 8-OH-DPAT, and the selective serotonin reuptake inhibitor, sertraline. We also examined whether post-weaning environmental enrichment, a paradigm well-known to modulate serotonergic signalling in the brain, had the capacity to normalise the anxiety phenotype of male offspring. Finally, we assessed gene expression levels of 5HT1AR and serotonin transporter in the offspring hippocampus to determine whether deficits in gene transcription contributed to the male-only anxiety phenotype. We report that male and female offspring of CORT-treated fathers are hypersensitive to sertraline but have normal hypothermic responses to 8-OH-DPAT. No deficits in htr1a and sert were found in association with paternal CORT treatment, and environmental enrichment did not rescue the anxiety phenotype of male offspring on the elevated-plus maze. These findings indicate that varying forms of paternal stress exert different effects on offspring brain serotonergic function.
RESUMEN
BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Diosgenin is a natural steroid saponin which was shown to play a beneficial role in Alzheimer's disease. OBJECTIVE: This study sought to investigate the potential effect of diosgenin on a rat model of PD. METHODS: Sprague Dawley rats were subjected to intra-striatal injection of lipopolysaccharide (LPS) and treated with diosgenin. Stepping, Whisker, and Cylinder tests were carried out to determine the motor function, and the expression of tyrosine hydroxylase was detected by immunohistochemistry. The levels of multiple proinflammatory cytokines, oxidative stress related factors and proteins involved in Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB) pathway were measured. The synergistic effect of environment enrichment on diosgenin was also investigated. RESULTS: Intra-striatal injection of LPS caused motor deficits in rats, induced inflammatory response and oxidative stress response, and activated the TLR/NF-κB pathway both in vivo and in vitro. Diosgenin could attenuate the LPS-induced alterations. Enriched environment enhanced the effect of diosgenin to ameliorate the LPS-induced motor deficits in rats and decreased the protein levels of TLR2, TLR4, and nuclear NF-κB in diosgenin treated PD rats. CONCLUSION: Diosgenin had a beneficial effect in LPS-induced rat PD models, by suppressing the TLR/NF-κB signaling pathway. Environmental enrichment could play a synergistic effect with diosgenin, by enhancing the inhibitory effect of diosgenin on the TLR/ NF-κB signaling pathway.
Asunto(s)
Antiparkinsonianos/uso terapéutico , Diosgenina/uso terapéutico , FN-kappa B/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Transformada , Células Cultivadas , Modelos Animales de Enfermedad , Miembro Anterior/fisiopatología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad de Parkinson/etiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
BACKGROUND: Factors leading to the harmful consumption of substances, like alcohol and sucrose, involve a complex interaction of genes and the environment. While we cannot control the genes we inherit, we can modify our environment. Understanding the role that social and environmental experiences play in alcohol and sucrose consumption is critical for developing preventative interventions and treatments for alcohol use disorders and obesity. METHODS: We used the drinking in the dark two-bottle choice (2BC) model of ethanol and sucrose consumption to compare male C57BL/6 mice housed in the IntelliCage (an automated device capable of simultaneously measuring behaviors of up to 16 mice living in an enriched social environment) with mice housed in standard isolated and social environments. RESULTS: Consistent with previous publications on ethanol-naïve and -experienced mice, social and environmental enrichment reduced ethanol preference. Isolated mice had the highest ethanol preference and IntelliCage mice the least, regardless of prior ethanol experience. In mice with no prior sucrose experience, the addition of social and environmental enrichment increased sucrose preference. However, moving isolated mice to enriched conditions did not affect sucrose preference in sucrose-experienced mice. CONCLUSIONS: The impact of social and environmental enrichment on ethanol consumption differs from sucrose consumption suggesting that interventions and treatments developed for alcohol use disorders may not be suitable for sucrose consumption disorders.
Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Etanol/farmacología , Medio Social , Trastornos Relacionados con Sustancias , Sacarosa/farmacología , Animales , Conducta de Elección , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Modelos Psicológicos , Conducta Social , Trastornos Relacionados con Sustancias/prevención & control , Trastornos Relacionados con Sustancias/psicologíaRESUMEN
Environmental enrichment (EE) is an experimental animal model that enhances an animal's opportunity to interact with sensory, motor, and social stimuli, compared to standard laboratory conditions. A prominent benefit of EE is the reduction of stress-induced anxiety. The relationship between stress and the onset of anxiety-like behavior has been widely investigated in experimental research, showing a clear correlation with structural changes in the hippocampus and basolateral amygdala (BLA). However, the mechanisms by which EE exerts its protective roles in stress and anxiety remain unclear, and it is not known whether EE reduces the effects of acute stress on animal behavior shortly following the cessation of stress. We found that EE can prevent the emergence of anxiety-like symptoms in rats measured immediately after acute restraint stress (1 h) and this effect is not due to changes in systemic release of corticosterone. Rather, we found that stress promotes a rapid increase in the nuclear translocation of glucocorticoid receptor (GR) in the BLA, an effect prevented by previous EE exposure. Furthermore, we observed a reduction of ERK (a MAPK protein) and CREB activity in the BLA promoted by both EE and acute stress. Finally, we found that EE decreases the expression of the immediate-early gene EGR-1 in the BLA, indicating a possible reduction of neuronal activity in this region. Hyperactivity of BLA neurons has been reported to accompany anxiety-like behavior and changes in this process may be one of the mechanism by which EE exerts its protective effects against stress-induced anxiety.
Asunto(s)
Ansiedad/metabolismo , Complejo Nuclear Basolateral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Ambiente , Sistema de Señalización de MAP Quinasas/fisiología , Receptores de Glucocorticoides/fisiología , Estrés Psicológico/metabolismo , Animales , Ansiedad/genética , Ansiedad/prevención & control , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Genes Inmediatos-Precoces/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Estrés Psicológico/genéticaRESUMEN
Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse.
Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Ansiedad/psicología , Ambiente , Etanol/farmacología , Estrés Psicológico/psicología , Animales , Ansiedad/complicaciones , Conducta Adictiva/psicología , Peso Corporal , Conducta de Elección/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Etanol/sangre , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Estrés Psicológico/complicacionesRESUMEN
Canonical transient receptor potential (TRPC) channels are widely expressed throughout the nervous system whereas their functions remain largely unclear. Here we investigated the effects of TRPC1 deletion on spatial memory ability of mice and the potential intervention by environmental enrichment (EE). Significant spatial memory impairment assessed by conditional fearing test, Y maze test and step-down test in TRPC1 knockout mice was revealed. The behavioral abnormality were attenuated by the treatment of EE. Proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) and tandem mass spectrometry (MS) revealed that TRPC1 deletion caused differential expression of a total of 10 proteins (8 up-regulated and 2 down-regulated) in hippocampus. EE treatment resulted in differential expression of a total of 22 proteins (2 up-regulated and 20 down-regulated) in hippocampus of TRPC1 knockout mice. Among these differentially expressed proteins, the expression of α-internexin and glia maturation factor ß (GMF-ß), two proteins shown to impair memory, were significantly down-regulated in hippocampus of TRPC1 knockout mice by EE treatment. Taken together, these data suggested that TRPC1 regulated directly or indirectly the expression of multiple proteins, which may be crucial for the maintenance of memory ability, and that EE treatment modulated spatial memory impairment caused by TRPC1 depletion and the mechanisms may involve the modulation of EE on the expression of those dys-regulated proteins such as α-internexin and GMF-ß in hippocampus.