Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
2.
BMC Biol ; 22(1): 145, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956546

RESUMEN

BACKGROUND: Microbes in the cold polar and alpine environments play a critical role in feedbacks that amplify the effects of climate change. Defining the cold adapted ecotype is one of the prerequisites for understanding the response of polar and alpine microbes to climate change. RESULTS: Here, we analysed 85 high-quality, de-duplicated genomes of Deinococcus, which can survive in a variety of harsh environments. By leveraging genomic and phenotypic traits with reverse ecology, we defined a cold adapted clade from eight Deinococcus strains isolated from Arctic, Antarctic and high alpine environments. Genome-wide optimization in amino acid composition and regulation and signalling enable the cold adapted clade to produce CO2 from organic matter and boost the bioavailability of mineral nitrogen. CONCLUSIONS: Based primarily on in silico genomic analysis, we defined a potential cold adapted clade in Deinococcus and provided an updated view of the genomic traits and metabolic potential of Deinococcus. Our study would facilitate the understanding of microbial processes in the cold polar and alpine environments.


Asunto(s)
Frío , Deinococcus , Genoma Bacteriano , Genómica , Deinococcus/genética , Adaptación Fisiológica/genética , Filogenia
3.
J Bacteriol ; : e0015524, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297619

RESUMEN

We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.

4.
BMC Genomics ; 25(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166640

RESUMEN

BACKGROUND: Penicillium chrysogenum is a filamentous fungal species with diverse habitats, yet little is known about its genetics in adapting to extreme subseafloor sedimental environments. RESULTS: Here, we report the discovery of P. chrysogenum strain 28R-6-F01, isolated from deep coal-bearing sediments 2306 m beneath the seafloor. This strain possesses exceptional characteristics, including the ability to thrive in extreme conditions such as high temperature (45 °C), high pressure (35 Mpa), and anaerobic environments, and exhibits broad-spectrum antimicrobial activity, producing the antibiotic penicillin at a concentration of 358 µg/mL. Genome sequencing and assembly revealed a genome size of 33.19 Mb with a GC content of 48.84%, containing 6959 coding genes. Comparative analysis with eight terrestrial strains identified 88 unique genes primarily associated with penicillin and aflatoxins biosynthesis, carbohydrate degradation, viral resistance, and three secondary metabolism gene clusters. Furthermore, significant expansions in gene families related to DNA repair were observed, likely linked to the strain's adaptation to its environmental niche. CONCLUSIONS: Our findings provide insights into the genomic and biological characteristics of P. chrysogenum adaptation to extreme anaerobic subseafloor sedimentary environments, such as high temperature and pressure.


Asunto(s)
Penicillium chrysogenum , Penicillium chrysogenum/genética , Genómica , Genoma Fúngico , Genes Fúngicos , Penicilinas/metabolismo
5.
BMC Genomics ; 25(1): 145, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321406

RESUMEN

BACKGROUND: Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS: The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION: Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.


Asunto(s)
Cyprinidae , Rayos Ultravioleta , Animales , Tibet , China , Cyprinidae/genética , Análisis de Secuencia de ADN
6.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625089

RESUMEN

Determining the functional consequences of karyotypic changes is invariably challenging because evolution tends to obscure many of its own footprints, such as accumulated mutations, recombination events, and demographic perturbations. Here, we describe the assembly of a chromosome-level reference genome of the gayal (Bos frontalis) thereby revealing the structure, at base-pair-level resolution, of a telo/acrocentric-to-telo/acrocentric Robertsonian translocation (2;28) (T/A-to-T/A rob[2;28]). The absence of any reduction in the recombination rate or genetic introgression within the fusion region of gayal served to challenge the long-standing view of a role for fusion-induced meiotic dysfunction in speciation. The disproportionate increase noted in the distant interactions across pro-chr2 and pro-chr28, and the change in open-chromatin accessibility following rob(2;28), may, however, have led to the various gene expression irregularities observed in the gayal. Indeed, we found that many muscle-related genes, located synthetically on pro-chr2 and pro-chr28, exhibited significant changes in expression. This, combined with genome-scale structural variants and expression alterations in genes involved in myofibril composition, may have driven the rapid sarcomere adaptation of gayal to its rugged mountain habitat. Our findings not only suggest that large-scale chromosomal changes can lead to alterations in genome-level expression, thereby promoting both adaptation and speciation, but also illuminate novel avenues for studying the relationship between karyotype evolution and speciation.


Asunto(s)
Cromatina , Genoma , Animales , Bovinos
7.
J Mol Evol ; 92(4): 467-487, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39017924

RESUMEN

In the present work, we carried out a comparative genomic analysis to trace the evolutionary trajectory of the bacterial species that make up the Liquorilactobacillus genus, from the identification of genes and speciation/adaptation mechanisms in their unique characteristics to the identification of the pattern grouping these species. We present phylogenetic relationships between Liquorilactobacillus and related taxa such as Bacillus, basal lactobacilli and Ligilactobacillus, highlighting evolutionary divergences and lifestyle transitions across different taxa. The species of this genus share a core genome of 1023 genes, distributed in all COGs, which made it possible to characterize it as Liquorilactobacillus sensu lato: few amino acid auxotrophy, low genes number for resistance to antibiotics and general and specific cellular reprogramming mechanisms for environmental responses. These species were divided into four clades, with diversity being enhanced mainly by the diversity of genes involved in sugar metabolism. Clade 1 presented lower (< 70%) average amino acid identity with the other clades, with exclusive or absent genes, and greater distance in the genome compared to clades 2, 3 and 4. The data pointed to an ancestor of clades 2, 3 and 4 as being the origin of the genus Ligilactobacillus, while the species of clade 1 being closer to the ancestral Bacillus. All these traits indicated that the species of clade 1 could be soon separated in a distinct genus.


Asunto(s)
Fermentación , Genoma Bacteriano , Filogenia , Adaptación Fisiológica/genética , Evolución Molecular , Bacillus/genética , Bacillus/metabolismo
8.
BMC Plant Biol ; 24(1): 399, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745128

RESUMEN

BACKGROUND: Riccia fluitans, an amphibious liverwort, exhibits a fascinating adaptation mechanism to transition between terrestrial and aquatic environments. Utilizing nanopore direct RNA sequencing, we try to capture the complex epitranscriptomic changes undergone in response to land-water transition. RESULTS: A significant finding is the identification of 45 differentially expressed genes (DEGs), with a split of 33 downregulated in terrestrial forms and 12 upregulated in aquatic forms, indicating a robust transcriptional response to environmental changes. Analysis of N6-methyladenosine (m6A) modifications revealed 173 m6A sites in aquatic and only 27 sites in the terrestrial forms, indicating a significant increase in methylation in the former, which could facilitate rapid adaptation to changing environments. The aquatic form showed a global elongation bias in poly(A) tails, which is associated with increased mRNA stability and efficient translation, enhancing the plant's resilience to water stress. Significant differences in polyadenylation signals were observed between the two forms, with nine transcripts showing notable changes in tail length, suggesting an adaptive mechanism to modulate mRNA stability and translational efficiency in response to environmental conditions. This differential methylation and polyadenylation underline a sophisticated layer of post-transcriptional regulation, enabling Riccia fluitans to fine-tune gene expression in response to its living conditions. CONCLUSIONS: These insights into transcriptome dynamics offer a deeper understanding of plant adaptation strategies at the molecular level, contributing to the broader knowledge of plant biology and evolution. These findings underscore the sophisticated post-transcriptional regulatory strategies Riccia fluitans employs to navigate the challenges of aquatic versus terrestrial living, highlighting the plant's dynamic adaptation to environmental stresses and its utility as a model for studying adaptation mechanisms in amphibious plants.


Asunto(s)
Análisis de Secuencia de ARN , Transcriptoma , Secuenciación de Nanoporos , Marchantia/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , Adaptación Fisiológica/genética , Epigénesis Genética
9.
BMC Plant Biol ; 24(1): 73, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273309

RESUMEN

BACKGROUND: Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS: In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS: Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.


Asunto(s)
Helechos , Helechos/genética , Transcriptoma , ARN del Cloroplasto , Metabolismo Secundario , Edición de ARN/genética , Lignina , Perfilación de la Expresión Génica , Cloroplastos/genética
10.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38363812

RESUMEN

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Adaptación Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Depsidos/metabolismo , Multiómica
11.
Mol Ecol ; 33(12): e17369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713101

RESUMEN

As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.


Asunto(s)
Polimorfismo de Nucleótido Simple , Pigmentación de la Piel , Pigmentación de la Piel/genética , Humanos , Fenotipo , Evolución Biológica , Adaptación Fisiológica/genética , Genética de Población , África , Adaptación Biológica/genética
12.
Plant Cell Environ ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076061

RESUMEN

Heterophylly is a phenomenon whereby an individual plant dramatically changes leaf shape in response to the surroundings. Hygrophila difformis (Acanthaceae; water wisteria), has recently emerged as a model plant to study heterophylly because of its striking leaf shape variation in response to various environmental factors. When submerged, H. difformis often develops complex leaves, but on land it develops simple leaves. Leaf complexity is also influenced by other factors, such as light density, humidity, and temperature. Here, we sequenced and assembled the H. difformis chromosome-level genome (scaffold N50: 60.43 Mb, genome size: 871.92 Mb), which revealed 36 099 predicted protein-coding genes distributed over 15 pseudochromosomes. H. difformis diverged from its relatives during the Oligocene climate-change period and expanded gene families related to its amphibious habit. Genes related to environmental stimuli, leaf development, and other pathways were differentially expressed in submerged and terrestrial conditions, possibly modulating morphological and physiological acclimation to changing environments. We also found that auxin plays a role in H. difformis heterophylly. Finally, we discovered candidate genes that respond to different environmental conditions and elucidated the role of LATE MERISTEM IDENTITY 1 (LMI1) in heterophylly. We established H. difformis as a model for studying interconnections between environmental adaptation and morphogenesis.

13.
Plant Cell Environ ; 47(8): 3046-3062, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38654596

RESUMEN

Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas/genética , Relojes Circadianos/genética
14.
Plant Cell Environ ; 47(3): 976-991, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164069

RESUMEN

Mosses are vital components of ecosystems, exhibiting remarkable adaptability across diverse habitats from deserts to polar ice caps. Sanionia uncinata (Hedw.) Loeske, a dominant Antarctic moss survives extreme environmental condition through perennial lifecycles involving growth and dormancy alternation. This study explores genetic controls and molecular mechanisms enabling S. uncinata to cope with seasonality of the Antarctic environment. We analysed the seasonal transcriptome dynamics of S. uncinata collected monthly from February 2015 to January 2016 in King George Island, Antarctica. Findings indicate that genes involved in plant growth were predominantly upregulated in Antarctic summer, while those associated with protein synthesis and cell cycle showed marked expression during the winter-to-summer transition. Genes implicated in cellular stress and abscisic acid signalling were highly expressed in winter. Further, validation included a comparison of the Antarctic field transcriptome data with controlled environment simulation of Antarctic summer and winter temperatures, which revealed consistent gene expression patterns in both datasets. This proposes a seasonal gene regulatory model of S. uncinate to understand moss adaptation to extreme environments. Additionally, this data set is a valuable resource for predicting genetic responses to climatic fluctuations, enhancing our knowledge of Antarctic flora's resilience to global climate change.


Asunto(s)
Briófitas , Briófitas/genética , Ecosistema , Regiones Antárticas , Nieve , Ambientes Extremos , Perfilación de la Expresión Génica
15.
Arch Microbiol ; 206(8): 350, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995446

RESUMEN

KKL-35 is a new oxadiazole compound with potent broad-spectrum antibacterial activity against a number of gram-positive and gram-negative bacteria. However, its influences on bacterial growth are unclear. This study is to investigate phenotypic changes of Staphylococcus aureus (SA) caused by KKL-35 and evaluate antibacterial activity of combinations of KKL-35 with 7 class of antibiotics available in medical facilities. KKL-35-treated SA showed significantly lower survival under stresses of NaCl and H2O2 than DMSO (21.03 ± 2.60% vs. 68.21 ± 5.31% for NaCl, 4.91 ± 3.14% vs. 74.78 ± 2.88% for H2O2). UV exposure significantly decreased survival of SA treated with KKL-35 than DMSO-treated ones (23.91 ± 0.71% vs. 55.45 ± 4.70% for 4.2 J/m2, 12.80 ± 1.03% vs. 31.99 ± 5.99% for 7.0 J/m2, 1.52 ± 0.63% vs. 6.49 ± 0.51% for 14.0 J/m2). KKL-35 significantly decreased biofilm formation (0.47 ± 0.12 vs. 1.45 ± 0.21) and bacterial survival in the serum resistance assay (42.27 ± 2.77% vs. 78.31 ± 5.64%) than DMSO. KKL-35 significantly decreased ethidium bromide uptake and efflux, as well as the cell membrane integrity. KKL-35 had low cytotoxicity and low propensity for resistance. KKL-35 inhibited SA growth in concentration-independent and time-dependent manners, and showed additivity when combined with the majority class of available antibiotics. Antibiotic combinations of KKL-35 with ciprofloxacin, rifampicin, or linezolid significantly decreased bacterial loads than the most active antibiotic in the corresponding combination. Thus, KKL-35 inhibits growth of SA by decreasing bacterial environmental adaptations, biofilm formation, membrane uptake and efflux, as well as increasing antibiotic sensitivity. Its potent antibacterial activity, low cytotoxicity, low propensity for resistance, and wide choices in antibiotic combinations make KKL-35 a promising leading compound to design new antibiotics in monotherapies and combination therapies to treat bacterial infections.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Oxadiazoles , Staphylococcus aureus , Humanos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Oxadiazoles/farmacología , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
16.
Extremophiles ; 28(3): 35, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052080

RESUMEN

3' → 5' exoribonucleases play a critical role in many aspects of RNA metabolism. RNase R, PNPase, and RNase II are the major contributors to RNA processing, maturation, and quality control in bacteria. Bacteria don't seem to have dedicated RNA degradation machineries to process different classes of RNAs. Under different environmental and physiological conditions, their roles can be redundant and sometimes overlapping. Here, I discuss why PNPase and RNase R may have switched their physiological roles in some bacterial species to adapt to environmental conditions, despite being biochemically distinct exoribonucleases.


Asunto(s)
Adaptación Fisiológica , Exorribonucleasas , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
17.
Zoolog Sci ; 41(1): 1-3, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38587511

RESUMEN

The endocrine and neuroendocrine systems exert powerful and broad control over the regulation of homeostasis in animals. Secreted hormones play significant roles in lifetime-related events such as germ cell development, sexual maturation, development, metamorphosis, aging, feeding, and energy metabolism. Additionally, hormones, particularly sex steroid hormones, are involved in reproduction, including sexual behavior and dimorphism. Changes in body color protect against external enemies, and circadian rhythms direct physiology and behaviors in synchrony with light and dark cycles. Water and electrolyte metabolism are essential for survival in land or seawater. Both aquatic and terrestrial animals have developed a variety of endocrine and neuroendocrine systems that exquisitely manage water and electrolyte metabolism to support survival. In zoological science, many animal species are investigated for their unique life history phenomena, and many researchers bring original and unique research approaches to understand these phenomena. Exploring such a variety of animal species leads to an understanding of diversity and unity, and contributes to the development of comparative endocrinology. This Special Issue contains 15 papers focusing on the endocrine mechanisms involved in the aforementioned life phenomena.


Asunto(s)
Envejecimiento , Sistemas Neurosecretores , Animales , Hormonas , Electrólitos , Agua
18.
Appl Microbiol Biotechnol ; 108(1): 125, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229330

RESUMEN

The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.


Asunto(s)
Bacillus , Ciervos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Bacillus/genética , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
19.
Antonie Van Leeuwenhoek ; 117(1): 25, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261138

RESUMEN

Strain KC13T, a novel desert-adapted, non-motile, Gram-stain-positive, rod-shaped, aerobic bacterium, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan and characterised by a polyphasic approach. Phylogenetic analysis based on 16S rRNA sequences revealed that strain KC13T was a member of the genus Nocardioides, and formed a distinct cluster with Nocardioides luteus DSM 43366T (99.3% sequence identity), Nocardioides albus DSM 43109T (98.9%), Nocardioides panzhihuensis DSM 26487T (98.3%) and Nocardioides albertanoniae DSM 25218T (97.9%). The orthologous average nucleotide identity and digital DNA-DNA hybridization values were in the range of 85.8-91.0% and 30.2-35.9%, respectively, with the type strains of closely related species. The genome size of strain KC13T was 5.3 Mb with a DNA G + C content of 69.7%. Comprehensive genome analyses showed that strain KC13T, unlike its close relatives, had many genes associated with environmental adaptation. Strain KC13T was found to have chemotaxonomic and phenotypic characteristics of members of the genus Nocardioides and some differences from phylogenetic neighbours. Based on the chemotaxonomic, genomic, phenotypic and phylogenetic data, strain KC13T represents a novel species of the genus Nocardioides, for which the name Nocardioides turkmenicus sp. nov. is proposed, and the type strain is KC13T (= JCM 33525T = CGMCC 4.7619T).


Asunto(s)
Actinomycetales , Nocardioides , Filogenia , ARN Ribosómico 16S/genética , Genómica , Suelo , ADN
20.
Bioessays ; 44(8): e2200040, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618444

RESUMEN

Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.


Asunto(s)
Metilación de ADN , Herencia , Animales , Metilación de ADN/genética , Epigénesis Genética/genética , Invertebrados , Ratones , Filogenia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda