Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512712

RESUMEN

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila , Drosophila , Receptores Notch , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis/genética , Transducción de Señal , Receptores Notch/metabolismo
2.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35302584

RESUMEN

Epithelial folding mediated by apical constriction serves as a fundamental mechanism to convert flat epithelial sheets into multilayered structures. It remains unknown whether additional mechanical inputs are required for apical constriction-mediated folding. Using Drosophila mesoderm invagination as a model, we identified an important role for the non-constricting, lateral mesodermal cells adjacent to the constriction domain ('flanking cells') in facilitating epithelial folding. We found that depletion of the basolateral determinant Dlg1 disrupts the transition between apical constriction and invagination without affecting the rate of apical constriction. Strikingly, the observed delay in invagination is associated with ineffective apical myosin contractions in the flanking cells that lead to overstretching of their apical domain. The defects in the flanking cells impede ventral-directed movement of the lateral ectoderm, suggesting reduced mechanical coupling between tissues. Specifically disrupting the flanking cells in wild-type embryos by laser ablation or optogenetic depletion of cortical actin is sufficient to delay the apical constriction-to-invagination transition. Our findings indicate that effective mesoderm invagination requires intact flanking cells and suggest a role for tissue-scale mechanical coupling during epithelial folding.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila , Animales , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Gastrulación , Morfogénesis
3.
Semin Cell Dev Biol ; 120: 94-107, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34059419

RESUMEN

Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.


Asunto(s)
Epitelio/metabolismo , Morfogénesis/fisiología , Animales , Drosophila
4.
Development ; 147(23)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277300

RESUMEN

The folding of epithelial sheets is important for tissues, organs and embryos to attain their proper shapes. Epithelial folding requires subcellular modulations of mechanical forces in cells. Fold formation has mainly been attributed to mechanical force generation at apical cell sides, but several studies indicate a role of mechanical tension at lateral cell sides in this process. However, whether lateral tension increase is sufficient to drive epithelial folding remains unclear. Here, we have used optogenetics to locally increase mechanical force generation at apical, lateral or basal sides of epithelial Drosophila wing disc cells, an important model for studying morphogenesis. We show that optogenetic recruitment of RhoGEF2 to apical, lateral or basal cell sides leads to local accumulation of F-actin and increase in mechanical tension. Increased lateral tension, but not increased apical or basal tension, results in sizeable fold formation. Our results stress the diversification of folding mechanisms between different tissues and highlight the importance of lateral tension increase for epithelial folding.


Asunto(s)
Fenómenos Biomecánicos/genética , Tipificación del Cuerpo/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Morfogénesis/genética , Actinas/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Estrés Mecánico , Alas de Animales/crecimiento & desarrollo , Alas de Animales/ultraestructura
5.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161062

RESUMEN

The modulation of mechanical tension is important for sculpturing tissues during animal development, yet how mechanical tension is controlled remains poorly understood. In Drosophila wing discs, the local reduction of mechanical tension at basal cell edges results in basal relaxation and the formation of an epithelial fold. Here, we show that Wingless, which is expressed next to this fold, promotes basal cell edge tension to suppress the formation of this fold. Ectopic expression of Wingless blocks fold formation, whereas the depletion of Wingless increases fold depth. Moreover, local depletion of Wingless in a region where Wingless signal transduction is normally high results in ectopic fold formation. The depletion of Wingless also results in decreased basal cell edge tension and basal cell area relaxation. Conversely, the activation of Wingless signal transduction leads to increased basal cell edge tension and basal cell area constriction. Our results identify the Wingless signal transduction pathway as a crucial modulator of mechanical tension that is important for proper wing disc morphogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Morfogénesis/genética , Alas de Animales/embriología , Proteína Wnt1/genética , Animales , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Transducción de Señal/genética , Estrés Mecánico
6.
Phys Biol ; 19(3)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35320785

RESUMEN

Gastrointestinal tracts exhibit a number of surface morphologies including zigzags, labyrinths, protrusions, and invaginations that are associated with digestive functions and are suggested to be formed by mechanical mechanisms. In this study, we investigate loading conditions and mechanical properties of tissues that reproduce different wrinkle patterning of gastrointestinal tracts on cell culture platforms. Numerical simulations of wrinkling dynamics are performed for a layered model consisting of an anisotropic epithelial layer resting on a bimodular soft substrate, which in turn adheres to a rigid foundation. Motivated by the patterning of intestinal villi of chicks and mice, we examine two-step compression, where the epithelial layer is subjected to uniaxial compression followed by biaxial compression, and one-step compression, where the epithelial layer is compressed in biaxial directions. Under different mechanical conditions of tissues, a wide variety of surface patterns are displayed that reproduce luminal patterns of digestive tracts. These results suggest possible conditions for mechanical regulation of tissues to duplicate gastrointestinal surface patternsin vitroand provide insight into mechanistic understandings of biological tissues.


Asunto(s)
Tracto Gastrointestinal , Animales , Anisotropía , Ratones
7.
Development ; 141(14): 2895-900, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948599

RESUMEN

Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/embriología , Epitelio/embriología , Gastrulación , Animales , Forma de la Célula , Rastreo Celular , Drosophila melanogaster/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Procesamiento de Imagen Asistido por Computador , Programas Informáticos
8.
Dev Cell ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692272

RESUMEN

Dynamic changes in three-dimensional cell shape are important for tissue form and function. In the developing Drosophila eye, photoreceptor differentiation requires the progression across the tissue of an epithelial fold known as the morphogenetic furrow. Morphogenetic furrow progression involves apical cell constriction and movement of apical cell edges. Here, we show that cells progressing through the morphogenetic furrow move their basal edges in opposite direction to their apical edges, resulting in a cellular tilting movement. We further demonstrate that cells generate, at their basal side, oriented, force-generating protrusions. Knockdown of the protein kinase Src42A or photoactivation of a dominant-negative form of the small GTPase Rac1 reduces protrusion formation. Impaired protrusion formation stalls basal cell movement and slows down morphogenetic furrow progression and photoreceptor differentiation. This work identifies a cellular tilting mechanism important for the generation of dynamic tissue shape changes and cell differentiation.

9.
Dev Cell ; 59(3): 400-414.e5, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38228140

RESUMEN

Epithelial furrowing is a fundamental morphogenetic process during gastrulation, neurulation, and body shaping. A furrow often results from a fold that propagates along a line. How fold formation and propagation are controlled and driven is poorly understood. To shed light on this, we study the formation of the cephalic furrow, a fold that runs along the embryo dorsal-ventral axis during Drosophila gastrulation and the developmental role of which is still unknown. We provide evidence of its function and show that epithelial furrowing is initiated by a group of cells. This cellular cluster works as a pacemaker, triggering a bidirectional morphogenetic wave powered by actomyosin contractions and sustained by de novo medial apex-to-apex cell adhesion. The pacemaker's Cartesian position is under the crossed control of the anterior-posterior and dorsal-ventral gene patterning systems. Thus, furrow formation is driven by a mechanical trigger wave that travels under the control of a multidimensional genetic guide.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Gastrulación , Proteínas de Drosophila/metabolismo , Morfogénesis , Actomiosina/metabolismo , Embrión no Mamífero/metabolismo
10.
Front Cell Dev Biol ; 10: 867438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547820

RESUMEN

The folding of two-dimensional epithelial sheets into specific three-dimensional structures is a fundamental tissue construction mechanism in animal development. A common mechanism that mediates epithelial folding is apical constriction, the active shrinking of cell apices driven by actomyosin contractions. It remains unclear whether cells outside of the constriction domain also contribute to folding. During Drosophila mesoderm invagination, ventrally localized mesoderm epithelium undergoes apical constriction and subsequently folds into a furrow. While the critical role of apical constriction in ventral furrow formation has been well demonstrated, it remains unclear whether, and if so, how the laterally localized ectodermal tissue adjacent to the mesoderm contributes to furrow invagination. In this study, we combine experimental and computational approaches to test the potential function of the ectoderm in mesoderm invagination. Through laser-mediated, targeted disruption of cell formation prior to gastrulation, we found that the presence of intact lateral ectoderm is important for the effective transition between apical constriction and furrow invagination in the mesoderm. In addition, using a laser-ablation approach widely used for probing tissue tension, we found that the lateral ectodermal tissues exhibit signatures of tissue compression when ablation was performed shortly before the onset of mesoderm invagination. These observations led to the hypothesis that in-plane compression from the surrounding ectoderm facilitates mesoderm invagination by triggering buckling of the mesoderm epithelium. In support of this notion, we show that the dynamics of tissue flow during mesoderm invagination displays characteristic of elastic buckling, and this tissue dynamics can be recapitulated by combining local apical constriction and global compression in a simulated elastic monolayer. We propose that Drosophila mesoderm invagination is achieved through epithelial buckling jointly mediated by apical constriction in the mesoderm and compression from the neighboring ectoderm.

11.
Front Cell Dev Biol ; 10: 810527, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133922

RESUMEN

Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), a Wnt pathway member, has been previously recognised as a stem cell marker in numerous epithelial tissues. In this study, we used Lgr5-EGFP-CreERT2 mice to analyse the distribution of LGR5-positive cells during craniofacial development. LGR5 expressing cells were primarily located in the mesenchyme adjacent to the craniofacial epithelial structures undergoing folding, such as the nasopharyngeal duct, lingual groove, and vomeronasal organ. To follow the fate of LGR5-positive cells, we performed lineage tracing using an inducible Cre knock-in allele in combination with Rosa26-tdTomato reporter mice. The slight expansion of LGR5-positive cells was found around the vomeronasal organ, in the nasal cavity, and around the epithelium in the lingual groove. However, most LGR5 expressing cells remained in their original location, possibly supporting their signalling function for adjacent epithelium rather than exerting their role as progenitor cells for the craniofacial structures. Moreover, Lgr5 knockout mice displayed distinct defects in LGR5-positive areas, especially in the reduction of the nasopharyngeal duct, the alteration of the palatal shelves shape, abnormal epithelial folding in the lingual groove area, and the disruption of salivary gland development. The latter defect manifested as an atypical number and localisation of the glandular ducts. The gene expression of several Wnt pathway members (Rspo1-3, Axin2) was altered in Lgr5-deficient animals. However, the difference was not found in sorted EGFP-positive cells obtained from Lgr5 +/+ and Lgr5 -/- animals. Expression profiling of LGR5-positive cells revealed the expression of several markers of mesenchymal cells, antagonists, as well as agonists, of Wnt signalling, and molecules associated with the basal membrane. Therefore, LGR5-positive cells in the craniofacial area represent a very specific population of mesenchymal cells adjacent to the epithelium undergoing folding or groove formation. Our results indicate a possible novel role of LGR5 in the regulation of morphogenetic processes during the formation of complex epithelial structures in the craniofacial areas, a role which is not related to the stem cell properties of LGR5-positive cells as was previously defined for various epithelial tissues.

12.
Elife ; 112022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195065

RESUMEN

Apical constriction driven by actin and non-muscle myosin II (actomyosin) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-the-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of actomyosin, we find that during Drosophila mesoderm invagination, actomyosin contractility is critical to prevent tissue relaxation during the early, 'priming' stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration. This binary response suggests that Drosophila mesoderm is mechanically bistable during gastrulation. Computer modeling analysis demonstrates that the binary tissue response to actomyosin inhibition can be recapitulated in the simulated epithelium that undergoes buckling-like deformation jointly mediated by apical constriction in the mesoderm and in-plane compression generated by apicobasal shrinkage of the surrounding ectoderm. Interestingly, comparison between wild-type and snail mutants that fail to specify the mesoderm demonstrates that the lateral ectoderm undergoes apicobasal shrinkage during gastrulation independently of mesoderm invagination. We propose that Drosophila mesoderm invagination is achieved through an interplay between local apical constriction and mechanical bistability of the epithelium that facilitates epithelial buckling.


Asunto(s)
Proteínas de Drosophila , Drosophila , Actomiosina/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Mesodermo/metabolismo , Morfogénesis , Optogenética
13.
Dev Cell ; 56(23): 3222-3234.e6, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34875225

RESUMEN

Cell shape dynamics during development is tightly regulated and coordinated with cell fate determination. Triggered by an interplay between biochemical and mechanical signals, epithelia form complex tissues by undergoing coordinated cell shape changes, but how such spatiotemporal coordination is controlled remains an open question. To dissect biochemical signaling from purely mechanical cues, we developed a microfluidic system that experimentally triggers epithelial folding to recapitulate stereotypic deformations observed in vivo. Using this system, we observe that the apical or basal direction of folding results in strikingly different mechanical states at the fold boundary, where the balance between tissue tension and torque (arising from the imposed curvature) controls the spread of folding-induced calcium waves at a short timescale and induces spatial patterns of gene expression at longer timescales. Our work uncovers that folding-associated gradients of cell shape and their resulting mechanical stresses direct spatially distinct biochemical responses within the monolayer.


Asunto(s)
Forma de la Célula , Elasticidad , Células Epiteliales/química , Modelos Biológicos , Estrés Mecánico , Animales , Fenómenos Biomecánicos , Perros , Células de Riñón Canino Madin Darby
14.
Front Physiol ; 11: 936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848868

RESUMEN

The mouse tongue possesses three types of gustatory papillae: large circumvallate papillae (CVP), foliate papillae (FOP) and fungiform papillae (FFP). Although CVP is the largest papilla and contain a high density of taste buds, little is known about CVP development. Their transition from placode to dome-shape is particularly ambiguous. Understanding this phase is crucial since dome-shaped morphology is essential for proper localization of the imminent nerve fibers and taste buds. Here, we report actomyosin-dependent apical and basal constriction of epithelial cells during dynamic epithelial folding. Furthermore, actomyosin-dependent basal constriction requires focal adhesion kinase to guide dome-shape formation. Sonic hedgehog (Shh) is closely associated with the differentiation or survival of the neurons in CVP ganglion and cytoskeletal alteration in trench epithelial cells which regulate CVP morphogenesis. Our results demonstrate the CVP morphogenesis mechanism from placode to dome-shape by actomyosin-dependent cell shape change and suggest roles that Shh may play in trench and stromal core formation during CVP development.

15.
Dev Cell ; 53(2): 212-228.e12, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169160

RESUMEN

Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Epitelio/embriología , Morfogénesis , Miosina Tipo II/metabolismo , Animales , Animales Modificados Genéticamente/embriología , Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Mecanotransducción Celular , Miosina Tipo II/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Biosystems ; 173: 157-164, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30248369

RESUMEN

Epithelial folding (EF) is a fundamental morphogenetic process that can be observed in the development of many organisms ranging from metazoans to green algae. Being early branching metazoans, cnidarians represent the best models to study evolutionarily conserved morphogenetic processes, including EF. Hydrozoa is the most evolutionary advanced group of the phylum Cnidaria. All colonial hydrozoans grow continuously, changing the shape of their colonies and spreading over the substrate with the help of elongating stolons. Owing to high diversity of colony architecture, they are ideal objects for comparative and evolutionary morphology. In the hydrozoan Dynamena pumila, the growth of the colony proceeds via a variety of morphogenetic processes. Our work is focused on the formation of the anchoring disc of the stolon, which is accompanied by inward-folding morphogenesis of the ectodermal layer. Successive stages of anchoring disc development were described with light, confocal transmission electron microscopy. We have shown that EF in Dynamena is associated with accumulation of F-actin in the constricting apical domains of forming bottle cells located at the bottom of the emerging fold. In addition, the nuclei of these cells are displaced to the basal domains. Taken together, these features may indicate that EF in Dynamena proceeds as an active invagination, although this process has never been described in the development of hydrozoans. Apparently, development of the anchoring disc can be viewed as a reliable and versatile model system for studying the cell-shape-change-driven epithelial sheet morphogenesis, which can be easily observed and analysed.


Asunto(s)
Actinas/metabolismo , Cnidarios/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Animales , Proliferación Celular , Forma de la Célula , Cnidarios/citología , Microscopía Confocal , Microscopía Electrónica de Transmisión , Morfogénesis , Estrés Mecánico
17.
Birth Defects Res ; 109(2): 153-168, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-27620928

RESUMEN

Neural tube defects arise from mechanical failures in the process of neurulation. At the most fundamental level, formation of the neural tube relies on coordinated, complex tissue movements that mechanically transform the flat neural epithelium into a lumenized epithelial tube (Davidson, 2012). The nature of this mechanical transformation has mystified embryologists, geneticists, and clinicians for more than 100 years. Early embryologists pondered the physical mechanisms that guide this transformation. Detailed observations of cell and tissue movements as well as experimental embryological manipulations allowed researchers to generate and test elementary hypotheses of the intrinsic and extrinsic forces acting on the neural tissue. Current research has turned toward understanding the molecular mechanisms underlying neurulation. Genetic and molecular perturbation have identified a multitude of subcellular components that correlate with cell behaviors and tissue movements during neural tube formation. In this review, we focus on methods and conceptual frameworks that have been applied to the study of amphibian neurulation that can be used to determine how molecular and physical mechanisms are integrated and responsible for neurulation. We will describe how qualitative descriptions and quantitative measurements of strain, force generation, and tissue material properties as well as simulations can be used to understand how embryos use morphogenetic programs to drive neurulation. Birth Defects Research 109:153-168, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Neurulación/genética , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Ambystoma mexicanum/embriología , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Animales , Fenómenos Biomecánicos , Movimiento Celular , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Tubo Neural/anomalías , Tubo Neural/crecimiento & desarrollo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Curr Top Dev Biol ; 114: 335-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26431573

RESUMEN

Beyond safeguarding the organism from cell misbehavior and controlling cell number, apoptosis (or programmed cell death) plays key roles during animal development. In particular, it has long been acknowledged that apoptosis participates in tissue remodeling. Yet, until recently, this contribution to morphogenesis was considered as "passive," consisting simply in the local removal of unnecessary cells leading to a new shape. In recent years, applying live imaging methods to study the dynamics of apoptosis in various contexts has considerably modified our vision, revealing that in fact, dying cells remodel their neighborhood actively. Here, we first focus on the intrinsic cellular properties of apoptotic cells during their dismantling, in particular the role of the cytoskeleton during their characteristic morphological changes. Second, we review the various roles of apoptosis during developmental morphogenetic processes and pinpoint the crucial role of live imaging in revealing new concepts, in particular apoptosis as a generator of mechanical forces to control tissue dynamics.


Asunto(s)
Apoptosis/fisiología , Citoesqueleto , Morfogénesis/fisiología , Animales , Forma de la Célula , Drosophila/citología , Drosophila/embriología , Células Epiteliales/citología , Células Epiteliales/fisiología , Extremidades/embriología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda