Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.121
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406091

RESUMEN

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , Terapia de Inmunosupresión , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
2.
J Biol Chem ; 300(3): 105680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272230

RESUMEN

Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de Neoplasias , Animales , Ratones , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Humanos , Línea Celular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
3.
Exp Cell Res ; 439(1): 114060, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719173

RESUMEN

BACKGROUND: Tie1 orphan receptor has become a focus of research, Tie1 can form a polymer with Tie2, regulate the Ang/Tie2 pathway and play a vital role in pathological angiogenesis and tumor progression, the function of Tie1 has remained uncertain in the progression of cervical cancer (CC). Here, we investigated the functional influences of Tie1 overexpress on CC in vitro and in vivo. METHODS: We used Immunohistochemistry (IHC) analysis to detect the relative expression of Tie1 in CC, and we analyzed its connection with the overall survival (OS) and progression free survival (PFS)of CC patients. To prove the role of Tie1 in cell proliferation and metastatic, Tie1 expression in CC cell lines was upregulated by lentivirus. RESULTS: The high expression of Tie1 in tumor cells of cervical cancer tissues is significantly correlated with FIGO stage, differentiated tumors, tumors with diameters, deep stromal invasion. We found that cell progression was promoted in Tie1-overexpress CC cell lines in vivo and in vitro. Tie1 potentially exerts a commanding influence on the expression of markers associated with epithelial-mesenchymal transition (EMT) and the PI3K/AKT signaling pathway. CONCLUSIONS: Our research indicates that Tie1 is highly connected to CC progression as it may play a role in the EMT process through the PI3K/AKT signaling pathway.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptor TIE-1 , Transducción de Señal , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Persona de Mediana Edad , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Receptor TIE-1/metabolismo , Receptor TIE-1/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
4.
Semin Cancer Biol ; 88: 46-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521737

RESUMEN

Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias/etiología , Neoplasias/genética
5.
Semin Cancer Biol ; 95: 120-139, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572731

RESUMEN

Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-ß is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-ß-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-ß is a multifunctional cytokine; thus, the signaling by TGF-ß can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-ß can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-ß and EMP in carcinoma progression, it is essential to understand how TGF-ß enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-ß-targeting therapies that eliminate cancer cell plasticity.


Asunto(s)
Carcinoma , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Citocinas , Transducción de Señal , Microambiente Tumoral
6.
J Gene Med ; 26(2): e3679, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404047

RESUMEN

BACKGROUND: Junctional adhesion molecule 2 (JAM2) plays a pivotal role in various biological processes, including proliferation, metastasis and angiogenesis, contributing to tumor progression. While previous studies have highlighted the polarizing functions of JAM2 in different cancer types, its specific role in lung adenocarcinoma (LUAD) remains unclear. METHODS: In this study, we harnessed multiple public databases to analyze the expression and prognostic significance of JAM2 in LUAD. Using the Linkedomics database, Matescape database and R package, we explored the associated genes, the potential biological functions and the impact of JAM2 on the tumor microenvironment. Our findings from public databases were further validated using real-time quantitative PCR, western blot and immunohistochemistry. Additionally, in vitro experiments were conducted to assess the influence of JAM2 on LUAD cell proliferation, invasion, migration, apoptosis and epithelial-mesenchymal transition. Furthermore, we established a xenograft model to investigate the in vivo effects of JAM2 on tumorigenesis. RESULTS: Our results revealed a significant downregulation of JAM2 in LUAD, and patients with low JAM2 expression exhibited unfavorable overall survival outcomes. Functional enrichment analysis indicated that JAM2 may be associated with processes such as cell adhesion, extracellular matrix, cell junctions and regulation of proliferation. Notably, increased JAM2 expression correlated with higher tumor microenvironment scores and reduced immune cell abundance. Furthermore, overexpression of JAM2 induced apoptosis, suppressed tumor proliferation and exhibited potential inhibitory effects on tumor invasion and migration through the modulation of epithelial-mesenchymal transition. Additionally, in vivo experiments confirmed that JAM2 overexpression led to a reduction in tumor growth. CONCLUSION: Overall, our study highlights the clinical significance of low JAM2 expression as a predictor of poor prognosis in LUAD patients. Moreover, JAM2 was found to exert inhibitory effects on various aspects of tumor progression. Consequently, JAM2 emerges as a promising prognostic biomarker and a potential therapeutic target for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Molécula B de Adhesión de Unión , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Biomarcadores , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Molécula B de Adhesión de Unión/genética , Neoplasias Pulmonares/genética , Pronóstico , Microambiente Tumoral/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-38955980

RESUMEN

PURPOSE: Invasive micropapillary carcinoma (IMPC) of the breast is known for its high metastatic potential, but the definition of pure and mixed IMPC remains unclear. This retrospective cohort study aims to investigate the prognostic significance of the micropapillary component ratio and the expression of critical molecules of epithelial-mesenchymal transition (EMT), including E-cadherin (E-cad), N-cadherin (N-cad), CD44s, and ß-catenin (ß-cat), in distinguishing between pure and mixed IMPCs. METHODS: We analyzed 100 cases of locally advanced IMPC between 2000 and 2018 and excluded patients who received neoadjuvant chemotherapy. Pure IMPC was defined as having a micropapillary component of over 90%. A comprehensive recording of prognostic parameters was conducted. The IMPC areas were analyzed using the immunohistochemical (IHC) staining method on the microarray set for pure and mixed IMPC patients. Pearson's chi-square, Fisher's exact tests, Kaplan-Meier analysis, and Cox proportional hazards analysis were employed. RESULTS: The comparative survival analysis of the entire group, based on overall survival (OS) and disease-free survival (DFS), revealed no significant difference between the pure and mixed groups (P = 0.480, HR = 1.474 [0.502-4.325] and P = 0.390, HR = 1.587 [0.550-4.640], respectively). However, in the pure IMPC group, certain factors were found to be associated with a higher risk of short survival. These factors included skin involvement (P = 0.050), pT3&4 category (P = 0.006), a ratio of intraductal component (> 5%) (P = 0.032), and high-level expression of N-cad (P = 0.020). Notably, none of the risk factors identified for short OS in pure IMPC cases were observed as significant risks in mixed cases and vice versa. Furthermore, N-cad was identified as a poor prognostic marker for OS in pure IMPCs (P = 0.002). CONCLUSION: The selection of a 90% ratio for classifying pure IMPCs revealed significant differences in certain molecular and prognostic parameters between pure and mixed groups. Notably, the involvement of N-cadherin in the epithelial-mesenchymal transition (EMT) process provided crucial insights for predicting OS and DFS while also distinguishing between the two groups. These findings strongly support the notion that the pure IMPC subgroup represents a distinct entity characterized by unique molecular characteristics and behavioral patterns.

8.
J Transl Med ; 22(1): 543, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844930

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor, and glutamine is vital for tumor cells. The role of glutamine transporter SLC1A5 in tumor progression and transarterial chemoembolization (TACE) efficacy is under study. This research seeks to determine the impact of SLC1A5 expression on the prognosis and TACE efficacy of HCC and elucidate its mechanisms. METHODS: SLC1A5 expression in HCC, correlation with patient outcomes, and response to TACE were studied in an open access liver cancer dataset and confirmed in our cohort. Additionally, the correlation between SLC1A5 expression and hypoxia, angiogenesis and immune infiltration was analyzed and verified by immunohistochemistry, immunofluorescence and transcriptome sequencing. Liver cancer cell lines with SLC1A5 expression knockdown or overexpression were constructed, and cell proliferation, colony formation, apoptosis, migration and drug sensitivity as well as in vivo xenograft tumor were measured. A gene set enrichment analysis was conducted to determine the signaling pathway influenced by SLC1A5, and a western blot analysis was performed to detect protein expression alterations. RESULTS: SLC1A5 expression was higher in HCC tissue and associated with poor survival and TACE resistance. Hypoxia could stimulate the upregulation of glutamine transport, angiogenesis and SLC1A5 expression. The SLC1A5 expression was positively correlated with hypoxia and angiogenesis-related genes, immune checkpoint pathways, macrophage, Tregs, and other immunosuppressive cells infiltration. Knockdown of SLC1A5 decreased proliferation, colony formation, and migration, but increased apoptosis and increased sensitivity to chemotherapy drugs. Downregulation of SLC1A5 resulted in a decrease in Vimentin and N-cadherin expression, yet an increase in E-cadherin expression. Upregulation of SLC1A5 increased Vimentin and N-cadherin expression, while decreasing E-cadherin. Overexpression of ß-catenin in SLC1A5-knockdown HCC cell lines could augment Vimentin and N-cadherin expression, suppress E-cadherin expression, and increase the migration and drug resistance. CONCLUSIONS: Elevated SLC1A5 was linked to TACE resistance and survival shortening in HCC patients. SLC1A5 was positively correlated with hypoxia, angiogenesis, and immunosuppression. SLC1A5 may mediate HCC cell migration and drug resistance via Epithelial-mesenchymal transition (EMT) pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Antígenos de Histocompatibilidad Menor , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/irrigación sanguínea , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Resistencia a Antineoplásicos/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Animales , Línea Celular Tumoral , Pronóstico , Masculino , Femenino , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Ratones Desnudos , Proliferación Celular , Movimiento Celular , Apoptosis , Ratones , Ratones Endogámicos BALB C , Regulación hacia Arriba/genética
9.
FASEB J ; 37(9): e23109, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527216

RESUMEN

LAMA5 (laminin α5) is a member of the laminin family. Despite the recent research implicating LAMA5 in cancer, the function of LAMA5 has remained uncertain in the progression of ovarian cancer (OC). Here, we investigated the functional influences of LAMA5 knockdown on OC in vitro and in vivo. In this study, we used immunohistochemistry (IHC) analysis to detect the relative expression of LAMA5 in OC and non-cancer tissues, and we analyzed its connection with the overall survival (OS) of OC patients. To prove the role of LAMA5 in cell proliferation, migration, and invasion, LAMA5 expression in OC cell lines was inhibited by lentivirus. Compared with normal fallopian tube tissue, epithelial ovarian cancer (EOC) tissue showed critically higher LAMA5 expression levels; additionally, high LAMA5 levels were a poor predictor of OS. We found that cell progression was restrained in LAMA5-knockdown OC cell lines in vivo and in vitro. Finally, LAMA5 might be a commanding inducer of the expression of epithelial-mesenchymal transition (EMT) and Notch signaling pathway-related markers. Together, our research indicates that LAMA5 is highly connected to OC progression as it may play a role in the EMT process through the Notch signaling pathway.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Transducción de Señal , Proliferación Celular/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica
10.
Mol Cell Biochem ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622439

RESUMEN

Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.

11.
Photochem Photobiol Sci ; 23(7): 1361-1372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865066

RESUMEN

Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.


Asunto(s)
Antracenos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Antracenos/farmacología , Transducción de Señal/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Ensayos de Selección de Medicamentos Antitumorales
12.
Gastric Cancer ; 27(2): 275-291, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38252226

RESUMEN

BACKGROUND: Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS: The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS: We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS: Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.


Asunto(s)
Adenosina , Neoplasias Peritoneales , Neoplasias Gástricas , Ubiquitina-Proteína Ligasas , Humanos , Adenosina/análogos & derivados , Línea Celular Tumoral , ARN Helicasas DEAD-box/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/genética
13.
Mol Biol Rep ; 51(1): 701, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822973

RESUMEN

BACKGROUND: Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS: We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION: This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Neoplasias , Transducción de Señal , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Animales , Transición Epitelial-Mesenquimal/genética , Progresión de la Enfermedad , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Apoptosis/genética
14.
J Biochem Mol Toxicol ; 38(3): e23681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444083

RESUMEN

Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , ARN Largo no Codificante , Humanos , Animales , Ratones , MicroARNs/genética , Paraquat/toxicidad , ARN Endógeno Competitivo , Secuenciación de Nucleótidos de Alto Rendimiento , Transición Epitelial-Mesenquimal , ARN Mensajero
15.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38220208

RESUMEN

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Asunto(s)
Neoplasias de la Mama , Flavonoides , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Cell Mol Life Sci ; 80(10): 303, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749450

RESUMEN

Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Desglicasa DJ-1 , Receptor trkB , Humanos , Transportadoras de Casetes de Unión a ATP , Células Madre Neoplásicas , Receptor trkB/metabolismo , Proteína Desglicasa DJ-1/metabolismo
17.
Adv Exp Med Biol ; 1450: 93-102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37452258

RESUMEN

Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-ß, Wnt/ß-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-ß, Wnt/ß-catenin, and Notch signaling pathways is promising. TGF-ß receptor inhibitors, Wnt/ß-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-ß, Wnt/ß-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , beta Catenina/metabolismo , Línea Celular Tumoral , Vía de Señalización Wnt/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Movimiento Celular
18.
Nano Lett ; 23(13): 6132-6140, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37382314

RESUMEN

Tumor-associated epithelial-mesenchymal transition (EMT) contains a set of transitional cellular states usually judged by the EMT marker expression. E-cadherin is a down-regulated EMT epithelial marker, and the detection of E-cadherin is challenging on cancer cell surfaces in the middle and late stages of EMT. Here, the trace E-cadherins on the living bladder cancer T24 cell surface during EMT were investigated with force-distance curve-based atomic force microscopy. The results confirmed that T24 cells are still in an intermediate state and can be transferred into the mesenchymal phenotype by long-term TGF-ß1 induction. During EMT, E-cadherins on the T24 cell surface gradually decreased and rarely clustered. E-cadherin is not completely missing, even at the end of EMT, but is too sparse to cluster. This work provides us with a visual understanding of the expression and distribution of trace markers during EMT and a deep comprehension of the indispensable significance of E-cadherin in cancer cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Fenómenos Mecánicos , Cadherinas/genética
19.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928352

RESUMEN

Prostate cancer (PC) is the most common cancer diagnosed in men worldwide. Currently, castration-resistant prostate cancer (CRPC), which is resistant to androgen deprivation therapy, has a poor prognosis and is a therapeutic problem. We investigated the antitumor effects on PC of an antibody neutralizing secreted disintegrin and metalloproteinase domain-containing protein 9 (sADAM9), which is a blood-soluble form. We performed proliferation assays, wound healing assays, invasion assays, Western blot (WB), and an in vivo study in which a sADAM9 neutralizing antibody was administered intratumorally to PC-bearing mice. In invasion assays, the sADAM9 neutralizing antibody significantly inhibited invasion in all cell lines (TRAMP-C2: p = 0.00776, LNCaP: p = 0.000914, PC-3: p = 0.0327, and DU145: p = 0.0254). We examined epithelial-mesenchymal transition (EMT) markers, one of the metastatic mechanisms, in WB and showed downregulation of Slug in TRAMP-C2, LNCaP, and DU145 and upregulation of E-cadherin in TRAMP-C2 and PC-3 by sADAM9 neutralization. In mouse experiments, the sADAM9 neutralizing antibody significantly suppressed tumor growth compared to controls (1.68-fold in TRAMP-C2, 1.89-fold in LNCaP, and 2.67-fold in PC-3). These results suggested that the sADAM9 neutralizing antibody inhibits invasion, migration, and tumor growth in PC. Previous studies examined the anti-tumor effect of knockdown of total ADAM9 or sADAM9, but this study used the new technology of neutralizing antibodies for sADAM9. This may be novel because there was no animal study using a neutralizing antibody for sADAM9 to see the relationship between ADAM9 expression and prostate cancer.


Asunto(s)
Proteínas ADAM , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Humanos , Movimiento Celular/efectos de los fármacos , Proteínas ADAM/metabolismo , Ratones , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Anticuerpos Neutralizantes/farmacología , Proliferación Celular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542313

RESUMEN

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Asunto(s)
Benzamidas , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos , Factores de Transcripción , Línea Celular Tumoral , Receptores Androgénicos/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda