Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neurobiol Learn Mem ; 165: 106861, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29723669

RESUMEN

The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior.


Asunto(s)
Cerebelo/fisiología , Locomoción/fisiología , Animales , Cerebelo/crecimiento & desarrollo , Humanos , Trastornos del Neurodesarrollo/fisiopatología
2.
Genes Brain Behav ; 21(2): e12791, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044095

RESUMEN

L-type voltage-gated calcium channels are important regulators of neuronal activity and are widely expressed throughout the brain. One of the major L-type voltage-gated calcium channel isoforms in the brain is CaV 1.3. Mice lacking CaV 1.3 are reported to have impairments in fear conditioning and depressive-like behaviors, which have been linked to CaV 1.3 function in the hippocampus and amygdala. Genetic variation in CaV 1.3 has been linked to a variety of psychiatric disorders, including autism and schizophrenia, which are associated with altered motor learning, associative learning and social function. Here, we explored whether CaV 1.3 plays a role in these behaviors. We found that CaV 1.3 knockout mice have deficits in rotarod learning despite normal locomotor function. Deletion of CaV 1.3 is also associated with impaired gait adaptation and associative learning on the Erasmus Ladder. We did not observe any impairments in CaV 1.3 knockout mice on assays of anxiety-like, depression-like or social preference behaviors. Our results suggest an important role for CaV 1.3 in neural circuits involved in motor learning and concur with previous data showing its involvement in associative learning.


Asunto(s)
Canales de Calcio Tipo L , Hipocampo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo
3.
Brain Res ; 1746: 146968, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533970

RESUMEN

Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Cerebelo/fisiopatología , Locomoción/fisiología , Estrés Oxidativo/fisiología , Sustancia Blanca/fisiopatología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Ataxia/etiología , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Sustancia Blanca/patología
4.
Brain Struct Funct ; 220(6): 3513-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25139623

RESUMEN

Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Δγ2), and granule cell output (α6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Δγ2 and not significantly affected in α6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered front-hind and left-right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements.


Asunto(s)
Marcha , Locomoción , Células de Purkinje/fisiología , Adaptación Fisiológica , Animales , Reacción de Prevención/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Motivación/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda